
Exercise 1

1. Below you will find an amino acid sequence:

RPDHFMASYRKGAVLLKIKQYKLALPVLEAVVREKPED

- A. Which amino acids are expected to be exposed to the solvent and which are expected to be buried within the protein core?
- Β.
- i) Manually predict the secondary structure of the above sequence by using the scheme below.

(The pattern above is a **general schematic** and **not a literal scheme** for the sequence; that is, depict the sequence using a straight line for a coil, an empty box for a beta sheet and a solid box for an alpha helix.)

- Afterwards, run the sequence through two different secondary structure prediction servers and <u>describe and explain</u> the differences between the outputs and your prediction.
- 2. You need to prepare a 1 L buffer at a concentration of 1 M and a pH value of 6.3.
 - A. Which buffer will you use? Write down its name and explain why you chose that specific buffer.
 - B. Please give details of how you plan to prepare the above buffer using the *mixing* technique (not via titration).

Acronym	CHEMICAL NAME	FW	р <i>К</i> _а	Useful R ange (in p H units)
MES	2-(N-morpholino)ethanesulfonic acid	195.2	6.1	5.5-6.7
Bis-Tris	bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane	209.2	6.5	5.8-7.2
ADA	N-(2-acetamido)-2-iminodiacetic acid	190.2	6.6	6.0-7.2
ACES	2-[(2-amino-2-oxoethyl)amino]ethanesulfonic acid	182.2	6.8	6.1-7.5
PIPES	piperazine- <i>N</i> , <i>N</i> '- <i>bis</i> (2-ethanesulfonic acid)	302.4	6.8	6.1-7.5
MOPSO	3-(N-morpholino)-2-hydroxypropanesulfonic acid	225.3	6.9	6.2-7.6
Bis-Tris Propane	1,3-bis[tris(hydroxymethyl)methylamino]propane	282.3	6.8 ^a	6.3-9.5
BES	N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid	213.2	7.1	6.4-7.8
MOPS	3-(N-morpholino)propanesulfonic acid	209.3	7.2	6.5-7.9
HEPES	N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)	238.3	7.5	6.8-8.2
TES	N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid	229.2	7.4	6.8-8.2
DIPSO	3-[N,N-bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid	243.3	7.6	7.0-8.2
TAPSO	3-[N-tris(hydroxymethyl)methylamino]-2-hydroxypropanesulfonic acid	259.3	7.6	7.0-8.2
TRIZMA	<i>tris</i> (hydroxymethyl)aminomethane	121.1	8.1	7.0-9.1
HEPPSO	N-(2-hydroxyethyl)piperazine- N '-(2-hydroxypropanesulfonic acid)	268.3	7.8	7.1-8.5
POPSO	piperazine- <i>N,N'-bis</i> (2-hydroxypropanesulfonic acid)	362.4	7.8	7.2-8.5
EPPS	N-(2-hydroxyethyl)piperazine-N'-(3-propanesulfonic acid)	252.3	8.0	7.3-8.7
TEA	triethanolamine	149.2	7.8	7.3-8.3
Tricine	N-tris(hydroxymethyl)methylglycine	179.2	8.1	7.4-8.8
Bicine	N,N-bis(2-hydroxyethyl)glycine	163.2	8.3	7.6-9.0
TAPS	N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid	243.3	8.4	7.7-9.1
AMPSO	3-[(1,1-dimethyl-2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid	227.3	9.0	8.3-9.7
CHES	2-(N-cyclohexylamino)ethanesulfonic acid	207.3	9.3	8.6-10.0
CAPSO	3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid	237.3	9.6	8.9-10.3
AMP	2-amino-2-methyl-1-propanol	89.1	9.7	9.0-10.5
CAPS	3-(cyclohexylamino)-1-propanesulfonic acid	221.3	10.4	9.7-11.1

Table A1-2 Properties of Good Buffers

Data compiled from various sources, including *Biochemical and Reagents for Life Science Research* 1994 (Sigma-Aldrich) and references therein. ${}^{4}PK_{a} = 9.0$ for the second dissociation stage.

Source: Maniatis, T. Molecular Cloning: A Laboratory Manual