
 

1 
 

 

 

 

Using Hyperspectral Remote Sensing for Detecting and Mapping Soil Quality 

Under Various Land-Uses in Dryland 

 

 

 
Thesis submitted in partial fulfillment 

of the requirements for the degree of  

“DOCTOR OF PHILOSOPHY” 

 

 

 

 

by 

 

 

 

Nathan    Levi  

 

 

 

 
Submitted to the Senate of Ben-Gurion University 

of the Negev 

 

 

 

6 December 2022 
Beer-Sheva 

 

 

 

 

 

 

 

 

 

 

 



 

2 
 

 
 

Ben-Gurion University of the Negev 

Kreitman School of Advanced Graduate Studies 

 

Using Hyperspectral Remote Sensing for Detecting and Mapping Soil Quality 

Under Various Land-Uses in Dryland 

 

 

 
Thesis submitted in partial fulfillment 

of the requirements for the degree of  

“DOCTOR OF PHILOSOPHY” 

 

 

by 

 

 

Nathan   Levi 

 

 

 
Submitted to the Senate of Ben-Gurion University 

of the Negev 

 

 

 

Approved by the advisor:  

Prof. Arnon Karnieli             Signature: _ ____________ 

Dr. Tarin Paz-Kagan Signature: _ _____ 

 

Prof. Yaron Ziv Signature: ___ ___________  
 

 

Approved by the Dean of the Kreitman School of Advanced Graduate Studies  

 

 

6 December 2022 
Beer-Sheva 

 

This work was carried out under the supervision of Dr. Tarin Paz-Kagan, Prof. Arnon Karnieli, and 



 

3 
 

Prof. Yaron Ziv in Albert Katz International School for Desert Studies, Faculty of Jacob Blaustein 

Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, 

Israel  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

 

Research-Student's Affidavit when Submitting the Doctoral Thesis for Judgment 
 

 

I_____________________, whose signature appears below, hereby declare that 

(Please mark the appropriate statements): 

 

___ I have written this Thesis by myself, except for the help and guidance offered by my Thesis 

Advisors. 

 

 

 

___ The scientific materials included in this Thesis are products of my own research, culled from the 

period during which I was a research student. 

 

 

 

 

___ This Thesis incorporates research materials produced in cooperation with others, excluding the 

technical help, excluding result analysis, commonly applied during such experimental work. 

Therefore, I attach an additional affidavit stating the contributions made by myself and the other 

participants in this research, which has been approved by them and submitted with their approval. 

 

_  This thesis in in Manuscript Format, includes one or more papers in which I am an "equal 

contributor". I therefore attach an additional affidavit signed by other equal contributor(s) stating their 

contribution to the paper and their approval that that paper could not be included in another 

Manuscript Format Thesis. 

 

 

Date:   _________________       Student's name:  ________________        Signature:______________ 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

 

Table of Contents 

Declaration....................................................................................................................................... iv 

Acknowledgments............................................................................................................................... v 

English Abstract ............................................................................................................................. vi 

Chapter 1: Using reflectance spectroscopy for detecting land-use effects on soil quality in 

dryland 

1. Introduction ...............................................................................................................................4 

2. Material and Methods.................................................................................................................. 5 

2.1 Study area…………..…………………………………………………. .......................... 5  

2.2 Soil sampling ………………………………………………………………….. ............. 7 

2.3 Geographic units and laboratory analysis ……………………………………… ............ 9 

2.4 Spectral measurement and processing…………..……………………………………….9 

2.5 Development of soil quality index (SQI)..……………….……………………… ............ 11 

2.6 Correlation and classification of soil and spectroscopy analysis ……………………..…11 

2.7 Statistical analysis of soil properties and SQI……………………………………........... 11 

3. Results…………………………………................................................................................... 13 

3.1 Soil properties and analysis.......................................................................................... 13  

3.2 Soil quality index (SQI) ................................................................................................... 

15 

3.3 Soil properties and SQI correlations with soil spectroscopy.......................................... 20 

3.4 Spectral classification of soil samples among LUs and sampling sites........................... 21 

4. Discussion...................................................................................................................................23 

4.1 Soil properties and the Soil quality index ..................................................................... 23  

4.2 Soil properties and SQI correlation with soil spectroscopy........................................... 24 

4.3 LUs and sampling sites spectral classification................................................................. 26 

5. Conclusion ....................................................................................................................................27 

 

Chapter 2: Soil quality index for assessing phosphate mining restoration in a hyper-arid 

environment. 

1. Introduction ...............................................................................................................................28 

2. Material ……………................................................................................................................ 30 

2.1 Study area……………………………………………………………. ............................ 30  

2.2 Study area and mining restoration practices…………………………………………….. 32 

2.3 Soil sampling and design……………… ……………………………………… ............. 33 

2.4 Selected soil properties ……………...………………………………………… ............. 36 

2.5 Soil quality index (SQI) development ………… ……….……………………… ............. 37 

2.6 Statistical analysis ………………………………..…………………………………............ 37 

3. Results………………………………….................................................................................. 38 

3.1 Soil quality indicators……………………… .................................................................. 38  

3.2 Soil quality index (SQI) .................................................................................................... 40 

4. Discussion..................................................................................................................................45 

4.1 Indicator selection: a minimum dataset for soil quality measurement.............................44  

4.2 Evaluation of restoration practice with time since restoration ........................................ 45 



 

2 
 

4.3 Assessment of soil quality index...................................................................................... 46 

5. Conclusion ...................................................................................................................................46 

 

Chapter 3: Airborne imaging spectroscopy for assessing the land-use effect on soil quality in 

drylands  

1. Introduction ...............................................................................................................................50 

2. Material and Methods.............................................................................................................. 55 

2.1 Study area .......................................................................................................................... 56 

2.2 Research approach and structure …………..……….…………………. .......................... 57  

2.3 Step 1: soil sampling analysis and SQI development …………………………. .............. 60 

2.4 Step 2: airborne hyperspectral image acquisition and processing …………………......... 62 

2.5 Step 3: IS approach integration of laboratory data.……… …….……………… ............. 66 

2.6 Statistical analysis ………………………………………………………………….......... 66 

3. Results………………………………….................................................................................... 66 

3.1 Soil quality index (SQI) development ................................................................................. 66 

3.2 Hyperspectral image pre-processioning ............................................................................. .69 

3.3 Spectral classification and correlation of SQI and soil indicators....................................... 70 

3.4 Soil indicators and soil prediction maps ............................................................................. 73 

3.5 Spectral classification and correlation of SQI and soil indicators....................................... 74 

 

4. Discussion..................................................................................................................................79 

4.1 Soil quality assessment …………...................................................................................... 79  

4.2 Spectral discriminant analysis and classification of LU..................................................... 80 

4.3 Spectral correlation to soil indicators and the SQI ............................................................ 81 

4.4 Soil quality mapping ……………………………. ............................................................ 83 

5 Conclusion ...................................................................................................................................86 

 

References ....................................................................................................................................... 88 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

 

 
Acknowledgments  

Nathan Levi was a brilliant student who received his master's degree at the Jacob Blaustein Institute 

for Desert Research, BGU, Sede Boqer Campus, under Prof. Arnon Karnieli and Dr. Tarin Paz-

Kagan. He continued to a combined track doctoral program under the supervision of Prof. Karnieli, 

Dr. Paz-Kagan, and Prof. Yaron Ziv. Nathan was in the final stages of submitting his Ph.D. when he 

unexpectedly passed away on September 29, 2022. The dissertation is summarized in three papers 

published in high-ranking journals, and we submit it on his behalf. We send our deepest and sincerest 

condolences to his family and friends for their tremendous loss. 



 

1 
 

Chapter 1: Figure captions  

Figure 1: (A) Location of the study area in the Negev desert, Israel; (B) The selected study area with 

the sampling points of the three land-use categories (agriculture, grazing, and natural reserves), whose 

locations were selected from a prior stratified random methodology. Full names and numbers of soil 

samples for all sampling sites are presented in Table 1.   

Figure 2: Stratified random survey components of Avdat region: (A) elevation, (B) lithology, (C) 

land use-land cover (LULC) classification, and the study area’s geographical units: north, center, and 

south. 

Figure 3: Examples of scoring curves of the respective transformation functions: (A) more is better, 

(B) less is better, and (C) optimum.  

Figure 4: Boxplot representation of each soil indicator values under different land uses of the entire 

study area: agriculture, grazing, and natural. Note: available water content (AWC); electrical 

conductivity (EC); extractable chlorine (Cl); extractable sodium (Na); extractable calcium and 

magnesium (Ca + Mg); sodium adsorption ratio (SAR); extractable nitrate (NO
3
); extractable 

phosphorus (P); extractable potassium (K); and soil organic matter (SOM). 

Figure 5: Scores of soil quality indices (SQIs) and their physical, biological and chemical 

components for the three land uses, according to the study area’s geographical distribution: north, 

center, and south.  Capital letters above the error bars represent significant differences among land 

uses. 

Figure 6: Partial least squares-regression (PLS-R) correlation scatterplots of predicted cross-

validation (CV) values versus soil laboratory analysis values for (A) several soil properties and (B) 

soil quality index (SQI) among the three LUs in Avdat region. RMSEC: root mean square error of 

calibration; RMSECV: root mean square error of cross-validation; EC: electric conductivity; Cl: 

chlorine; Na: sodium; Ca + Mg: calcium and magnesium; SAR: sodium adsorption ratio; NO
3
: nitrate; 

P: phosphorus; SOM: soil organic matter. Each colored shape represents a land-use type: natural 

ecosystem (blue triangles), agro-pastoral grazing (red squares) and agriculture (green rhombuses). 

Figure 7:  Partial least squares-discriminant analysis (PLS-DA) classification of initial 2150 bands 

spectral resolution laboratory spectroscopy for both (A) LUs and (B) sampling sites in Avdat region. 

Each figure includes a number of latent variables (LV) used, overall accuracy (Acc), and Kappa 

coefficient (K
c
) values for each model. Colored circles indicate 95% confidence level. Full names 

and numberers of soil samples for all sampling sites are presented in Table 1.  

Chapter 2: Figure captions 

Figure 1: Schematic map with the location of the Zin phosphate mining field (A); Zin mining field 

topographic (B); and geological map (C) with the sampling blocks of the three study sites of Gov, 

Afik, and Hagor (red points). 

Figure 2. Scoring functions for data standardization, assigning the appropriate term and mathematical 

function to each soil property. Si is the soil property score, x is the parameter value, a is the soil 

property average, and b is 2-2 of the data. Graphs adapted from Karlen et al. (2003). AWC: available 

water content, SOM: soil organic matter, EC: electrical conductivity, K: potassium, and P: 

phosphorus. 

Figure 3. Predictive power score (PPS) matrix results for all the scored soil properties. Darker shades 

of blue represent stronger correlations between each pair of variables. The colored frames represent 

the associated physical, biological, and chemical components of the soil properties. SQI: soil quality 
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index, AWC: available water content, SOM: soil organic matter, EC: electrical conductivity, K: 

potassium, P: phosphorus, and Poly: polysaccharides. 

Figure 4. Box-whisker plot showing the value distributions and outliers of each of the soil properties 

in the natural and restored study sites. Red asterisks represent significant differences (p < 0.05) 

between treatments within sites. AWC: available water content, SOM: soil organic matter, EC: 

electrical conductivity, K: potassium, and P: phosphorus; n refers to the natural area, and r refers to 

restored. 

Figure 5.  Spider diagrams showing the differences between the natural and restored plots in unitless 

scores. AWC: available water content, SOM: soil organic matter, EC: electrical conductivity, K: 

potassium, and P: phosphorus. 

Figure 6. Stack graph of indicator groups for the restoration practice for each site and their 

combination. An asterisk under the site name represents an overall significant difference between the 

restoration practices. The asterisks within the colored bars show significant differences between the 

groups of indicators (i.e., biological, chemical, and physical). 

Appendix A. Residuals distribution histograms of the mixed-effect ANOVA tests for the individual 

scored soil indicators. The red curves represent the normal distribution for each of the indicators. 

Properties that had their residual normal distribution unmet (p < 0.05) were then transformed using 

the non-parametric rank-transform method (Conover and Iman, 1981). ANOVA: analysis of variance, 

SW-W: Shapiro-Wilks W-test, AWC: available water content, EC: electrical conductivity, K: 

potassium, NH4: ammonium, NO3: nitrate, P: phosphorus, and SOM: soil organic matter. 

Appendix  B. PCA results for all soil properties from the: (1) Gov, (2) Hagor, and (3) Afik sites 

compared to their natural sites. Abbreviation: AWC: available water content, EC: electrical 

conductivity, P: phosphorus, K: potassium, SOM: soil organic matter, and bold numbers refer to high 

factor loading for each PC. 

 Chapter 3: Figure captions 

Figure 1: (A) Location of Avdat region within the Negev Desert, Israel. (B) Soil sampling sites, their 

respective land-use class, and the Zin Stream channel positioned over the hyperspectral image. Fully 

detailed information for all sampling sites is presented in Levi et al. (2020). RHS: runoff harvesting 

system. 

Figure 2: Study flowchart of the three steps for developing the soil quality assessment model for 

regional-scale imaging spectroscopy (IS) prediction mapping for individual soil properties and the 

overall soil quality index (SQI) in Avdat region study area.  

Figure 3: Predictive power score (PPS) correlation matrix for all the measured soil properties. The 

colored frames represent the associated physical, biological, and chemical components of the soil 

indicators. Pairs of soil indicators with high correlations (PPS ≥ 0.5) were excluded from further SQI 

calculation. SQI: soil quality index, AWC: available water content, EC: electrical conductivity, Cl: 

chlorine, Na: sodium, Ca + Mg: calcium and magnesium, SAR: sodium adsorption ratio, P: 

phosphorus, K: potassium, NO3: nitrate, and SOM: soil organic matter. 

Figure 4: Mean overall soil quality index (SQI) scores and their respective physical, biological, and 

chemical indicators’ subgroups for the four land-uses (agriculture, grazing, RHS, and natural) in the 

Avdat study area. Uppercase letters above the error bars indicate significant differences between the 
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land-uses of the overall scores. In contrast, lowercase letters within the bars denote the differences 

between the particular attributes (p < 0.05). RHS: runoff-harvesting system. 

Figure 5: (A) Normalized difference vegetation index (NDVI); (B) land-use land-cover (LULC) 

classification map; and (C) final clipped AisaFENIX bare soil image for the Avdat region. 

Figure 6: Mean soil spectral signatures of the four land-use practices (agriculture, grazing, RHS, and 

natural) extracted from the AisaFENIX hyperspectral image for the Avdat study area. RHS: runoff 

harvesting system. 

Figure 7: Partial least squares-discriminant analysis (PLS-DA) classification for the four land-use 

practices (agriculture, grazing, RHS, and natural) extracted spectra from the AisaFENIX 

hyperspectral image of the Avdat study area. The figure includes the model's number of latent 

variables (LV) and the overall accuracy (OA) and Kappa coefficient (Kc) statistics. Colored circles 

indicate a 95% confidence level. RHS: runoff harvesting system. 

Figure 8: Variable importance in projection (VIP) plot of the agriculture (green), grazing (orange), 

runoff-harvesting system (RHS; purple), and natural (blue) land-uses in the Avdat region. Each bar 

represents the importance score of a particular hyperspectral image waveband in the partial least 

squares-discriminant analysis (PLS-DA) spectral classification analysis. The red sections highlight 

regions with spectral features with significant VIP peaks. 

Figure 9: Support vector machine-regression (SVM-R) scatterplots and main results for the 

correlated soil properties and the overall soil quality index (SQI), between the measured calibration 

(Cal) and the validation (Val) datasets, and also the results of the upscaled image prediction maps 

(Pred). RMSE: root mean square error; RPIQ: ratio of performance to interquartile range; RPD: ratio 

of performance to deviation; AWC: available water content, NO3¯: nitrate, SOM: soil organic matter, 

EC: electrical conductivity, SAR: sodium adsorption ratio, P: phosphorus, and K: potassium.  

Figure 10: Variable importance in projection (VIP) plot of the physical (blue), biological (pink), and 

chemical (green) soil properties in the Avdat region. Each bar represents the importance score of a 

particular hyperspectral image waveband in the support vector machine regression (SVM-R) analysis. 

The red sections highlight spectral regions with significant VIP peaks. AWC: available water content, 

EC: electrical conductivity, Cl: chlorine, Na: sodium, Ca + Mg: calcium and magnesium, SAR: 

sodium adsorption ratio, NO3¯: nitrate, P: phosphorus, and SQI: soil quality index. 

Figure 11: (A) Final upscaled prediction map for the overall soil quality index (SQI) over the Avdat 

region, affected by various LU features, including (B) grazing LU and highly eroded bright chalky 

soil around an unrecognized Bedouin village; (C) agricultural fields (on the left edge of the image), 

stone-wall terraces (on the right), and the Zin Stream (in the center); and (D) a liman runoff-harvesting 

system (RHS) and degraded soil in response to steep and barren topography. 
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Chapter 1: Table captions  

Table 1. Distribution of 121 soil samples among 14 sites across the Avdat region. Each site includes several 

samples and land-use type (Agriculture, grazing, or natural). 

Table 2. The mean values of each soil property along with its respective land-use and geographical unit: (A) 

Agro-ecosystems; (B) Grazing; and (C) Natural ecosystems, presented each with its standard deviation and 

significant differences between treatments, represented with small letters (a, b, c).  

Table 3. A matrix presenting the measured soil quality properties and their respective Pearson correlation 

coefficients for the study area. Correlations with high significant differences of p ≤ 0.05 are marked in bold, 

whereas strong correlations (R ≥ 0.8) with very high significant differences of p ≤ 0.01 were added with (*). 

Table 4. Results of the principal component analysis (PCA) of soil in the study area. Chosen principal 

components (PCs) scores for the model and their ranks were marked bold. 

Table 5. Partial least squares-regression (PLS-R) analysis results for the Avdat region. The PLS-R produces 

distinction of indicative spectral regions for each soil property. For each soil property in the PLS-R model, the 

number of latent variables (LV), coefficient of determination (R2), and the ratio of performance to deviation 

(RPD) are shown. Models with “excellent” (RPD ≥ 2.5 and R2 ≥ 0.80) and “good” (2 < RPD < 2.5 and R2 ≥ 

0.70) are marked in bold. Variable importance in projection (VIP) presents the highly significant wavelengths 

(nm) for each soil property with either excellent or good prediction value. 

 

Chapter 2: Table captions 

Table 1. Soil properties for soil quality assessment in open-pit phosphate mines, their functions, their 

laboratory chemical analysis methods, and their measurement units. 

 

Table 2. Significant differences (p-values) between sites' restoration and their adjacent natural areas. 

Bold values are statistically significant (α < 0.05) 

Table 3. Varimax rotation PCA results of all sites for scoring soil properties from the restored and 

the natural sites combined. The bolded soil properties refer to the absolute highest loading within 

10% of the factor loading. The overall model had a cumulative percentage of 68.1%. AWC: available 

water content, SOM: soil organic matter, EC: electrical conductivity, K: potassium, and P: 

phosphorus. Bold numbers refer to the highest factor loading for each soil indicator by its 

corresponding PC. 

 

Chapter 3: Table captions 

Table 1.  abbreviations list and acronyms used in the paper. 

 

Table 2: Soil quality properties and their respective affiliation, units of measurement, and analysis 

methods. A comprehensive review of the applied laboratory survey methods can be found in Levi et 

al. (2020). 
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Table 3: Principal component analysis (PCA) results for the scored soil indicators. The highest 

loading factor within each principal component (PC) for every indicator is marked bold. 

 

Table 4: Support vector machine-regression (SVM-R) analysis and image upscaling of prediction 

results of Avdat region. For each of the soil properties in the model, the number of support vectors 

(SVs), the adjusted coefficient of determination for the calibration and validation datasets (R2
adjCal 

and R2
adjVal), as well as for the F-statistic value and degrees of freedom (F(df)Cal and F(df)Val), and 

the root mean square error (RMSECal and RMSEVal) were assigned. The ratio of performance to 

deviation (RPDVal) and the interquartile range (RPIQVal) for the validation set was also calculated. 

Properties with significant prediction values (RPIQVal ≥ 3, RPDVal ≥ 2, and R2
adjVal ≥ 0.7) were 

examined for variable importance in projection (VIP) wavebands, upscaled to the image extent, and 

were assigned R2 and RMSE (R2
Pred and RMSEPred). Model constraints and optimization parameters’ 

cost (C), epsilon (ϵ), and gamma (γ) are noted. 
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Abstract: Global population growth has resulted in land-use (LU) changes in many natural 

ecosystems, causing deteriorated environmental conditions that impact soil quality. This rapid growth 

in the global population caused many natural ecosystems to be transformed into human-dominated 

ones. Such LU dynamics require greater resource exploitation, commonly resulting in degraded 

environmental conditions that are acknowledged in the soil quality. The effects on the soil are even 

more acute in water-scarce and limited resources environments such as drylands. Therefore, 

developing appropriate approaches for soil quality and function evaluation is necessary since the soils 

in those areas are usually undeveloped and retain lower organic matter capacity. The soil quality 

index (SQI) method for soil quality assessment was well-proved as effective in arid environments 

with various LU practices. Soil quality differences between LUs can also be observed and measured 

using the local point-scale and regional scale based on imaging spectroscopy in the near-infrared 

reflectance spectroscopy (NIRS) method, which includes spectral ranges between 400-2500 nm. 

Using hyperspectral remote sensing assists in evaluating physical, biological, and chemical soil 

properties based on spectral differences between both natural soils and interrupted lands by human 

LU activities (e.g., agriculture, grazing, and mining). In this Ph.D. research, I examined the 

applicability of the soil quality assessment model in dryland environments that have gone under 

various anthropogenic influences. 

Chapter 1 focused on developing a soil quality assessment index combining 14 soil properties for 

three different LUs (agriculture grazing and reference natural lands) and geographical units across 

the study area of the Avdat region in the central Negev Desert, Israel. The research goal was to apply, 

measure, and evaluate soil properties based solely on the spectral differences between both natural 

and human-dominated LU practices in the dryland environment of the central Negev Desert, Israel. 

This goal was achieved through developing and implementing chemometrics techniques generated 

from soil point spectroscopy. Soil quality index (SQI) values, based on 14 physical, biological, and 

chemical soil properties, were quantified and compared between LUs and geographical units across 

the study area. Laboratory spectral measurements of soil samples were applied. Significant 

differences in SQI values were found between the units. The statistical and mathematical methods 

for evaluating the soil properties’ spectral differences included principal component analysis (PCA), 

partial least squares-regression (PLS-R), and partial least squares-discriminant analysis (PLS-DA). 

Correlations between predicted spectral values and measured soil properties and SQI were calculated 

using PLS-R and evaluated by the coefficient of determination (R2), the Root Mean Square Error of 

Calibration, and Cross-Validation (RMSEC and RMSECV), and the ratio of performance to deviation 

(RPD). The PLS-R produced “excellent” and “good” prediction values for some soil properties, 

including EC, Cl, Na, Ca + Mg, SAR, NO3, P, and SOM. The results of the PLS-R model for SQI 
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are R2 = 0.90, RPD = 2.46, RMSEC = 0.034, and RMSECV = 0.057. The PLS-DA classification of 

the laboratory spectroscopy was applied, resulting in high accuracy and kappa coefficient values 

when comparing LUs. In contrast, comparing the sampling sites resulted in lower overall accuracy 

(Acc = 0.82) and kappa values (Kc = 0.80). It is concluded that differentiation between physical, 

biological, and chemical soil properties, based on their spectral differences, is the key feature in the 

successful results for recognizing and characterizing various soil processes in an integrative 

approach.  The results prove that soil quality and most soil properties can be successfully monitored 

and evaluated using NIRS in a comprehensive, non-destructive, time- and cost-efficient method.  

Chapter 2 was related to the effects of mining restoration on soil quality. The present study strives 

to evaluate the impact of restoration practices (i.e., topsoil restoration) on soil quality properties 

compared to adjacent natural areas in an open-pit phosphate mine in a hyper-arid region of Israel. 

Mining contributes significantly to economic development, but it entails extensive environmental 

damage, such as soil degradation and water and air pollution. Mining activity impacts the soil quality, 

often making it unable to support ecosystem function and structure. The current study aims to apply 

the soil quality index (SQI) as a methodology for quantifying soil restoration status in an open-pit 

phosphate mine in Israel’s hyper-arid environment. Accordingly, our first goal was to determine 

whether the topsoil conservation method resembles the adjacent natural area in terms of soil 

properties and overall soil quality, despite this hyper-arid region's extreme environmental and 

climatic conditions. Our second goal was to evaluate the restoration success based on the SQI 

approach as a function of time by comparing the different restoration stages applied in various sites. 

Therefore, the hypothesis is that the topsoil method in mines would enhance overall SQI and 

restoration efforts, where the timespan since restoration would also affect the emerging processes due 

to the poor, slow soil development in such a hyper-arid environment. In this regard, we evaluated an 

ecological restoration practice that includes topsoil refilling compared to the adjacent undisturbed 

natural system, using transformed and standardized scorings of 11 physical, biological, and chemical 

soil properties that were further statistically integrated into overall SQI values. Our results revealed 

significant differences between the restoration practice areas and the nearby natural areas, with a 

higher soil quality value in the latter. It is proposed that the topsoil restoration method is mainly 

affected by soil biological indicators, such as soil organic matter, soil proteins, and polysaccharides 

related to micro-organic growth, and a lesser extent, by the physical properties (primarily infiltration 

rate, followed by AWC). The former properties encourage the biocrust establishment, which is 

essential for soil surface stabilization and affects the water infiltration rate and nutrient availability. 

The chemical indicators showed no significant differences between most of the sites for the overall 
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soil quality. In conclusion, soil properties, primarily physio-biological ones, should be selected to 

quantify and evaluate restoration practices in hyper-arid ecosystems.  

Chapter 3 was focused on assessing the effects of human activities (i.e., land uses such as grazing, 

modern agriculture, and runoff harvesting systems) on soil quality using airborne IS in the Avdat 

region study area. Thus, the main objective of this study was to assess the effects of human activities 

(i.e., land-use as grazing, modern agriculture, and runoff harvesting system) on soil quality using 

imaging spectroscopy (IS) in the arid regions of Israel. Based on the significant impact LUs have on 

their natural arid soil surroundings, the main goal of this research is to evaluate their effects over the 

study area using IS applications. Specifically, the objectives include (1) demonstrating the capability 

of IS for continuous mapping of multiple soil properties and the integrated SQI over the whole study 

area; (2) examining the combination of both conventional soil chemical laboratory survey and the 

contribution of the spectral dimension to the regression-based prediction capabilities of IS; and (3) 

evaluating the effect of LU change on the soil health patterns in arid regions that include agriculture, 

grazing, and runoff-harvesting systems (RHSs) for agricultural and forestry purposes on the 

uninterrupted natural land. For this, 12 physical, biological, and chemical soil properties were selected 

and further integrated into the soil quality index (SQI) as a method to assess the significant effects of 

LU changes in an arid area in southern Israel. A flight campaign of the AisaFENIX hyperspectral 

airborne sensor was used to develop an IS prediction model for the SQI on a regional scale. The 

spectral signatures, extracted from the hyperspectral image itself, were well separable among the four 

LUs using the partial least squares-discriminant analysis (PLS-DA) classification method (OA = 

95.31%, Kc = 0.90). The correlation was performed using multivariate support vector machine-

regression (SVM-R) models between the spectral data and the measured soil indicators and the overall 

SQI. The SVM-R models were significantly correlated for several soil properties, including the 

overall SQI (R2adjVal = 0.87), with the successful prediction of the regional SQI mapping 

(R2adjPred = 0.78). Seven individual soil properties, including fractional sand and clay, SOM, pH, 

EC, SAR, and P, were successfully used for developing prediction maps. Applying IS, and 

statistically integrative methods for comprehensive soil quality assessments enhances the prediction 

accuracy for monitoring soil health and evaluating degradation processes in arid environments. This 

study establishes a precise tool for sustainable and efficient land management and could be an 

example for future potential IS earth-observing space missions for soil quality assessment studies and 

applications. 
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Chapter 1: Using reflectance spectroscopy for detecting land-use effects on soil quality in 

drylands 

Levi N, Karnieli A, and Paz-Kagan T. 2020. Using reflectance spectroscopy for detecting land-use effects on soil quality 

in dryland. Soil and Tillage Research. 199: 104571. (IF= 5.374; Category: soil science; Rank= 6/37 (Q1)). 

https://doi.org/10.1016/j.still.2020.104571 

 

1. Introduction 

Global population growth over the past few decades has increased the need for food, shelter, and 

other services and has resulted in the transformation of many natural ecosystems into human-

dominated ones (Foley, 2005). Land-use change (LUC) from natural to human-dominated land is a 

critical aspect of global change (Orenstein and Hamburg, 2009; Phillips et al., 2017) and may cause 

deteriorated environmental conditions (Metzger et al., 2006; Tscharntke et al., 2005). Such LU 

changes have enabled humans to increase needed resources, but they also potentially reduce the 

capacity of ecosystems to maintain food production and to regulate climate, soil, and air quality in a 

sustainable way. LU practices determine soil quality and soil function, which constitute crucial 

aspects for future sustainable LU management (Crist et al., 2017). Therefore, remediation and 

maintenance of the soil quality in response to LU is essential (Adeel et al., 2005), especially in 

drylands, where the soil undergoes degradation processes.  

Assessment of soil quality includes the integration of physical, biological, and chemical 

properties as indicators of the soil’s performance (Andrews et al., 2004). These key soil properties 

are dynamically variable in space and time. Soil quality assessment can be applied to either human-

dominated LUs, such as agriculture, where the primary ecosystem service is yield (agricultural 

productivity), or to natural ecosystems, where the primary ecosystem service could be the 

continuation of the environmental conditions and biodiversity conservation (Bünemann et al., 2018). 

The variability of soil indicators makes soil quality assessment a challenging task (Doran and Parkin, 

1994). Two approaches for this task are the Soil Management Assessment Framework (SMAF) 

(Andrews et al., 2004; Viscarra Rossel et al., 2006; Wienhold et al., 2009) and the Cornell Soil Health 

Test (CSHT)  (Idowu et al., 2009; Moebius-Clune et al., 2016). Both approaches are based on 

selecting a Minimum Data Set (MDS), comprising a minimum number of indicators (soil properties) 

for defining and quantifying soil performance, while avoiding over-complexity of the soil quality 

assessment model and maintaining its reproducibility, ease of sampling, and low cost (Andrews et 

al., 2004; Karlen et al., 1997). According to Bünemann et al. (2018), SMAF is a more flexible 

framework in terms of selecting indicators using standardized protocols. Once the MDS is selected, 

https://doi.org/10.1016/j.still.2020.104571
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the indicators are then transformed into a normalized score that represents the soil quality index (SQI) 

value (Andrews et al., 2004, 2002; Karlen et al., 1997). Soil quality assessment using the SQI method 

has been widely demonstrated in the literature, for both agricultural purposes (Mandal et al., 2001; 

Mukherjee and Lal, 2014; Triantafyllidis and Kontogeorgos, 2018) and ecological monitoring 

(Blecker et al., 2012; Lima et al., 2016; Paz-Kagan et al., 2016).  

SQI requires extensive soil analyses, which remain expensive, as well as time and labor-

consuming when using the standard procedures (Paz-Kagan et al., 2014). Therefore, more 

straightforward, time and cost-efficient, and non-destructive soil quality assessments are required. 

Near infrared reflectance spectroscopy (NIRS) grants the ability to assess various aspects of soil 

quality with non-destructive, reproducible, and cost-effective techniques. NIRS is based on 

hyperspectral data, including the visible (VIS, 400–700 nm), near-infrared (NIR, 700–1100 nm), and 

shortwave infrared (SWIR, 1100 2500–  nm) spectral regions. Studies have shown the advantages of 

using RS in time-efficiency and the simultaneous analyses of multiple soil properties (Awiti et al., 

2008; Cécillon et al., 2009; Romsonthi et al., 2018; Velasquez et al., 2005; Veum et al., 2017). Paz-

Kagan et al. (2014) demonstrated the use of 14 soil quality indicators in the variability of soil 

attributes among three different LU types that changed from managed to unmanaged and vice versa. 

They developed the spectral soil quality index (SSQI) based on the NIRS of physical, biological, and 

chemical soil analyses. The SSQI integrates all relevant scored SQI indicators and then classifies 

them according to their soil spectral differences.  

Although soil spectroscopy has been demonstrated successfully in many areas, these studies were 

mostly related to temperate climate  regions that were subjected to anthropogenic effects, mainly 

agricultural systems, and were limited to a few land-use practices. The application of NIRS has not 

been previously applied in such a hyper-arid environment. This is possibly due to the relatively small-

scale human activity and LU changes that generally occur in such scarcely populated regions with 

extreme climatic conditions. Hence, the main goal of the current research is to assess the effect of 

LU alteration, with different management practices, on soil quality in a dryland area. The novelty of 

this research lies in applying the combined SQI and NIRS methods in a water-scarce and nutrient-

poor arid area. This objective was accomplished by integrating physical, biological, and chemical 

analyses, as well as NIRS laboratory-derived data, followed by the SQI method, in the Avdat region, 

Israel. The research questions include: (1) How do the different management practices (LU) impact 

soil indicators in an arid area? (2) Which indicators are more sensitive to different management 

practices?, and (3) Can soil properties and SQI be predicted based on NIRS in arid soils?   

2. Material and Methods 



 

7 
 

2.1 Study area 

In this study, the Avdat region, a scarcely populated dryland region in the Negev Desert of Israel, 

was selected. The area, which extends over 24 km2, was chosen since it includes two main human 

activities, crop cultivation (mainly vines and olives) and the grazing of goats and sheep, that are 

adjacent to natural park reserves with unique ecological values (Ohana-Levi et al., 2018). The study 

area (Fig. 1) contains three LU categories, including two types of settlements: agricultural farms 

(single-family), agro-pastoral grazing land (Bedouin villages), and natural park reserves. The area is 

defined as arid by the aridity index (UNEP, 1992), which is calculated by the ratio between the annual 

rainfall (80–100 mm) and the annual potential evaporation (about 1700 mm), in which the 

precipitation gradient decreases and the evaporation rate increases the further southward from the 

Mediterranean Sea (Ziv et al., 2014). The average daily temperature ranges from 5°C in the winter 

to 32°C in the summer  (Olsvig-Whittaker et al., 2012). Lithology is dominantly characterized by 

limestone mixed with dolomite, chalk, and marl. The soil type in the area is homogeneous, consisting 

mostly of loess soil (Ohana-Levi et al., 2018). Soil development occurs mostly in the upper parts of 

the watershed, where shallow patches of soil cover exist among steep barren limestone rocks, and in 

the lower parts, which consist of colluvium embedded with unconsolidated rocks. The soil columns 

range from 80 cm in the upstream part to several meters in the lower parts (Olsvig-Whittaker, 1983; 

Yair and Danin, 1980). 
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Figure 1: (A) Location of the study area in the Negev Desert, Israel; (B) the selected study area with the sampling points 

of the three land-use categories (agriculture, grazing, and natural reserves), whose locations were selected from a prior 

stratified random methodology. Full names and number of soil samples for all sampling sites are presented in Table 1.   

Table 1: Distribution of 121 soil samples among 14 sites across the Avdat region. Each site includes several samples, 

land-use type (agriculture, grazing, or natural), topographic landscape position and means elevation, and soil class based 

on mean fractional soil texture. 

Sampling site 
Number of 

samples 
Land-use type 

Landscape 

position and 

elevation (m) 

Soil class and mean 

fractional Sand, Silt, 

and Clay (%) 

Even Ari farm (AAR) 6 Agriculture Toeslope (547) Loam (40.13, 46.2, 13.67) 

Borot Ramaliah (BR) 16 Grazing Toeslope (528) 
Sandy Loam (63.1, 23.1, 

13.8) 

Borot Ramaliah-Even Ari 

(BRAAR) 
6 Agriculture Toeslope (527) Loam (51.83, 31.47, 16.7) 

Borot Ramaliah natural 

(BR_N) 
9 Natural 

Valley,  

Channel (523) 

Sandy Loam (62.7, 23.17, 

14.13) 

Beit Hashanti (BS) 13 Agriculture 
Toeslope, Valley 

(510) 

Sandy Loam (53.17, 

27.67, 19.16) 

Bedouin village by Even-

Ari (BV) 
5 Grazing 

Toeslope, Valley 

(559) 

Sandy Loam (61.4, 23.6, 

15) 

El Azazme-Hava stream 

(EIAZZ) 
9 Grazing 

Footslope, 

Toeslope (572) 

Sandy Loam (66.4, 17.86, 

15.74) 

Eyal Israeli farm (EIZ) 8 Agriculture Footslope (549) 
Sandy Loam (58.43, 

27.82, 13.75) 

Ein Avdat (Eovdat) 9 Grazing 
Footslope, 

Toeslope (541) 

Sandy Loam (56.87, 

25.52, 17.61) 

Havarim stream (HH) 4 Agriculture Toeslope (553) 
Sandy Loam (61.3, 24.7, 

14) 

Havarim stream natural 

(HH_N) 
10 Natural 

Backslope, 

Footslope (524) 

Sandy Loam (60, 30.2, 

9.8) 

Bedouin village by Beit 

Hashanti (ID) 
8 Grazing Toeslope (525) 

Sandy Loam (62.15, 

23.52, 14.33) 

Lifa gal viewpoint (LGAL) 8 Natural Summit (597) 
Sandy Loam (58.49, 24.7, 

16.81) 

Zin stream (ZIN) 10 Natural 
Toeslope, Channel 

(592) 

Sandy Loam (59.22, 

25.37, 15.41) 

2.2 Soil sampling 

The sampling area included 14 different sites within the three LUs. Selecting the precise soil 

sample locations was done by conducting a prior stratified random methodology (SRM, Fig. 2) that 

was based on three different inputs: (1) elevation based on a digital elevation model; (2) soil type 

based on a pedology map, with the spatial distribution of soil texture from the official Survey of Israel 

data; and (3) LU categories based on the classification of a Landsat 8 image acquired on 13 August 

2016, with an overall accuracy of 99.8% (Ohana-Levi et al., 2018). The SRM allows the selection of 

random soil samples based on the variation of the different data sources (Kothari, 2004). 

2.3 Geographic units and laboratory analysis  
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Since the study area stretches over a broad and elongated cross-section approximately 11 km in 

length (Fig. 1), with different elevations and climatic attributes, soil indicator values may present 

some significant differences within the study area more related to the environmental gradient than to 

LU management practices. For example, elevation gradually increases southwards (Fig. 2A), whereas 

the northern and central parts share a relatively flatter surface around the Zin’s downstream basin. 

Lithology differs as well (Fig. 2B), in which smoother loess soils reside around the stream path. 

Evapotranspiration, combining precipitation and temperature as environmental factors, shows 

significant differences between all three parts, in which the mean annual rates are 1671, 1694, and 

1717 mm for the northern, center, and southern sections, respectively. Therefore, the statistical 

analysis was divided into three geographical units to minimize the environmental effect and to 

evaluate the management practices’ effects on soil quality. 

Soil samples from the different management practices were collected and transferred to the 

laboratory for physical, biological, and chemical soil analysis and laboratory spectroscopy. A total 

number of 121 soil samples were collected in April 2017 from 14 different sites scattered across the 

landscape. These are presented in Table 1 with their respective LU, landscape position, height, soil 

class, and texture. The soil samples were collected from the upper topsoil at a depth of 0–15 cm, 

mostly from lower topographical locations around toe-slopes and stream basins, where the soil 

column is more developed. Each soil sample was assigned an accurate location using a portable GPS 

device. The soil samples were packed into paper bags, then transferred and stored unopened at room 

temperature until analysis and laboratory survey.  

The analytic methods included 14 analyses based on the SMAF protocol (Wienhold et al., 

2009): physical: soil texture (fractional clay, silt, and sand) for assessing the soil structure and 

fragmentation, and the available water content (AWC), related to the plant available water storage 

capacity; biological: soil organic matter (SOM), related to energy and nutrient storage and carbon 

sequestration, and extractable nitrate (NO3
-) in the soil, related to nitrogen-containing life building 

blocks and nitrogen release; and chemical: pH, electrical conductivity (EC), extractable chlorine (Cl), 

extractable sodium (Na), extractable calcium and magnesium (Ca + Mg), and the sodium adsorption 

ratio (SAR), which act as indicators for soil salinization conditions, and extractable phosphorus (P) 

and extractable potassium (K), which are essential nutrients, available in the soil, for plant growth 

and health.  

The measurement of AWC was conducted by oven-drying the soil samples at 105°C to a 

constant weight, followed by measuring the weight differences (Carter and Gregorich, 2006). Soil 

organic matter (SOM) was measured by the organic carbon-furnace method after oven-drying soil 
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samples at 105°C for 3 h (to remove any CaCO3) and weighing the soil samples, followed by burning 

the dry soil in a furnace for 2 h at 500°C and re-weighing the soil samples (Casida et al., 1964).  Soil 

nitrogen (N) was measured as extractable nitrate (NO3
-) by potassium chloride extractions (Norman 

and Stucki, 1981). Soil nutrient values (NO3
-, P, K, Na, Ca, Mg) were extracted by shaking an 

ammonium acetate plus acetic acid solution with pH 4.8, which was then filtered through paper, and 

analyzed using an inductively coupled plasma emission spectrometer (ICP) (Brady and Weil, 1999). 

The samples’ pH values were measured by composing a 2:1 part water-soil suspension and 

determined using the pH electrode probe of a Lignin pH robot. Finally, the soil EC was examined on 

a well-stirred 1:1 soil-water suspension (20 ml each), using an EC meter. 

 

Figure 2: Stratified random survey components of Avdat region: (A) elevation, (B) lithology, (C) land use-land cover 

(LULC) classification, and the study area’s geographical units: north, center, and south. 

2.4 Spectral measurement and processing 

The spectral measurements of all 121 soil samples were performed in laboratory conditions. 

The soil samples were sieved through a 2-mm sieve to remove aggregation and stones and were 

spectrally measured using the portable Analytical Spectral Devices (ASD) Field Spec® Pro 

spectrometer. The ASD spectral range is 350–2500 nm with a 25° field of view. The spectrometer 

was recalibrated using a standard white reference panel (Spectralon Labsphere Inc., North Sutton, 

NH, USA). Samples were scanned under illumination from four directions, while the spectrometer 

sensor was set above the sample at the height of 18.5 cm. The idea behind this step is to diminish the 

effects of micro-topography shadowing (bidirectional illumination effects). The mean value of every 

four readings was used as the representative sample signature that was then averaged to one spectral 

reading. The spectral resolution of the obtained data was 1 nm for the entire spectral range. 
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2.5 Development of soil quality index (SQI) 

Soil quality indices combine all relevant indicators for soil condition interpretation within a 

proportional score. Transforming the indicators is necessary in order to standardize each indicator on 

a comparable scale. All indicators from the laboratory analysis were transformed and standardized 

into unitless scores (Si), ranging from 0 to 1, which were then given a proportional weight and 

summed. These scores represented each of the indicator’s explanatory contributions to the soil 

conditions according to management practices and LU, where natural ecosystem measurements were 

set as a reference for the other two LUs. AWC, SOM, and NO3
- are essential soil quality indicators; 

therefore, the maximum presence of all indicates higher soil quality. 

On the other hand, high abundances of EC, Cl, Na, and Ca + Mg soil properties may indicate a 

condition in which the soil is under the salinization process, which means lower soil quality and 

functionality. Therefore, the aim is to observe lower soil salinity values. The remaining soil indicator 

values (pH, SAR, P, and K) are likely to vary between each LU treatment, where either very high 

values (e.g., excessive fertilizing) or low ones may harm the soil’s quality. Hence, an equal amount 

needs to be obtained. The sampling sites were grouped according to their geographical locations (i.e., 

northern, central, and southern), and their overall SQI values and physical, biological, and chemical 

components were calculated separately.  

Eqs. 1–3 and Fig. 3 show the scoring functions, including their respective typical curves, 

according to the above adjustments and transformations, and based on previous literature (Moebius-

Clune et al., 2016; Paz-Kagan et al., 2014; Seybold et al., 1997; Wienhold et al., 2009). Three 

functions can be defined: (1) the “more is better” scoring curve with positively graduating slopes that 

characterize AWC, SOM, and NO3
-; (2) the “less is better” curve for negatively depressing slopes, 

which represents EC, Cl, Na, and Ca + Mg; and (3) the “optimum” curve that centers around a mean 

value, which characterizes pH, SAR, P, and K. The transformations of the original values were 

calculated using the following functions (Masto et al., 2007): 

𝑆𝑖𝑚𝑜𝑟𝑒 =  
1

1 + 𝑏−𝑏(𝑥−𝑎)
 (1) 

𝑆𝑖𝑙𝑒𝑠𝑠 =  
1

1 + 𝑒𝑏(𝑥−𝑎)
 (2) 

𝑆𝑖𝑜𝑝𝑡𝑖𝑚𝑢𝑚 =  1 × 𝑒
−(𝑥−𝑎)2

𝑏  (3) 



 

12 
 

where x is the soil property value, a is the value’s least square deviation from the mean, and b is the 

slope of mean according to its standard deviation (2d2). Soil indicator performances with scores from 

1.0–0.8 are considered to be very high scores, 0.8–0.6 are high, 0.6–0.4 are medium, 0.4–0.2 are low, 

and 0.2–0.0 are very low scores.  

 

Figure 3: Examples of scoring curves of the respective transformation functions: (A) more is better, (B) less is better, 

and (C) optimum.  

Once the original values were rescaled by their respective functions, a principal component 

analysis (PCA) was performed for further interpretation. The PCA is a statistical method that aims to 

reduce the number of dimensions within a dataset (Jolliffe et al., 2016). It transforms correlated 

variables into a smaller number of significantly different uncorrelated dimensions (variables) called 

principal components (PC), where the chosen number of PCs account for most of the variability of 

the data (Hotelling, 1933). The low co-variability among PCs helps to separate the data into 

statistically distinct groups. For this reason, the correlations between variables were calculated. Soil 

variables that were highly correlated were removed from the data to prevent redundancy in the model 

(Jolliffe et al., 2016). PCs with a higher proportion of variance than 5% were examined. The scored 

soil properties were calculated into an additive value of the essential weighted indicators for each 

LU, which is the ultimate soil quality index (SQI) Eq.4: 

𝑆𝑄𝐼 =  ∑ 𝑃𝑊𝑖 × 𝑆𝑖 ′

𝑛

𝑖=1

 (4) 

where PWi is the PCA weighing factor and Si’ is one of the scoring functions, depending on the soil 

property. This final index value is considered as a total rank of the soil quality, with regard to the 

examined management practices and LU under study.   

2.6 Correlation and classification of soil and spectroscopy analysis  

The correlation between the laboratory soil measurements and their spectral data was performed 

using a partial least squares-regression (PLS-R) cross-validation procedure. PLS-R is a predictive 
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technique for quantitative spectral analysis (Paz-Kagan et al., 2014; Viscarra Rossel et al., 2006). Its 

main advantage derives from its ability to use multiple predictor variables to create predictive models 

with high collinearity. PLS-R uses covariance between the spectra (predictor: X) and the soil 

laboratory analysis, as well as the SQI (response variables: Y). The focus was placed the 

abovementioned soil indicators and their correlations with their spectral data. Each soil indicator 

correlates differently with its spectral data, and each has more significant wavelengths with which it 

corresponds. This is due to the fact that characteristic wavelengths differ between each soil indicator 

and management practice according to the relationship their physical and chemical structures 

maintain with the electromagnetic radiation, which can be measured in a comparative spectral 

analysis (Ben-Dor et al., 2009; Cécillon et al., 2009).  

Pre-processing transformations (PPTs) were applied and tested on the spectral signatures in an 

attempt to improve their prediction ability through the regression process. Such PPTs include mean 

and maximum normalization and baseline offset effects corrections (Tekin et al., 2014), first and 

second derivatives of the reflectance values (Fystro, 2002; Shepherd and Walsh, 2002), the second-

order polynomial Savitzky–Golay smoothing algorithm with 11 smoothing points (Savitzky and 

Golay, 1964), and generalized least squares weighting (GLSW) (Martens et al., 2003). The best 

predictive fitted values were found with the combination of two PPTs: (1) autoscale and (2) GLSW 

with a single adjustable parameter, α, which was set to 0.02 (Paz-Kagan et al., 2015; Rozenstein et 

al., 2015) (See Appendix A). To measure the relative importance of each wavelength, variable 

importance in projection (VIP) scores were derived from the PLS-R to determine the significant 

effect of each wavelength defined by each soil indicator. Evaluations of the prediction rate for the 

regressions between the predicted and observed soil indicators were made by calculating the Root 

Mean Square Error of Calibration and Cross Validation (RMSEC and RMSECV) and the coefficient 

of determination (R2) values. Therefore, the data needed to be divided into a calibration dataset (75% 

of the data) and a randomly chosen validation dataset (25% of the data), which was used as the model 

prediction accuracy. In addition, to standardize the prediction correlations comparably, the ratio of 

performance to deviation (RPD) was calculated as RPD = SD/RMSECV.  Chang et al. (2001) 

proposed the RPD’s graduated ranking of the prediction models, in which models with RPD ≥ 2.5 

and R2 ≥ 0.80 are considered “excellent,” 2 < RPD ≤ 2.5 and R2 ≥ 0.70 are considered “good,” 1.5 < 

RPD ≤ 2 and R2 ≥ 0.60 are considered “moderate,” and RPD ≤ 1.5 and R2 < 0.60 are considered 

“poor”. However, Mcbratney and Minasny (2016) have warned about the use of both measures as 

the only indices of the prediction model, since they share a strong relationship and ultimately present 

the same concept. Thus, RPD and R2 cannot be used as assessment tools for goodness of fit on their 

own. Instead, both measures should be presented and compared along with the RMSEC and 
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RMSECV of the prediction models to compare the models’ prediction intervals.  

Assessment and quantification of the differences in the spectral variation in soil quality between 

LUs were conducted using partial least-squares discriminant analysis (PLS-DA). The PLS-DA 

categorizes the continuous predictor variable (X: soil indicators) into separate classes according to 

their variance between each group of samples. The outcome of the PLS-DA is a scatterplot in which 

each sample is classified into one of the predetermined classes (LU or sampling site), in addition to 

a statistical evaluation of significant differences between classes. 

2.7 Statistical analysis of soil properties and SQI 

We applied a one-way analysis of variance (ANOVA) for each soil indicator and SQI under each 

particular LU. The distinction between each pair of LUs made by their separation of means was 

examined using a Tukey Honest Significance Difference (HSD) post hoc test, for which p ≤ 0.05 

indicates a significant difference. In cases where ANOVA assumptions of the variables were not met 

for the original data, a logarithmic transformation was applied, followed by a reexamination of the 

assumptions. If the indicators’ assumptions were still violated, a non-parametric Kruskal-Wallis test 

was conducted, following by a pairwise Wilcoxon rank-sum test to examine significant differences 

between pairs of LUs for each soil property. Statistical calculations and analyses were performed 

using the R-Studio version 1.0.143 software (RStudio Inc., Boston, MA, USA).  

3. Results 

3.1 Soil property analysis  

The laboratory analysis of the soil is shown in Table 2, presenting the mean values of the soil 

properties and their standard deviations (SDs), according to their LU and geographical unit. To 

remove the minimum number of outliers from the dataset, by excluding only the extreme values, we 

applied the median absolute deviation (MAD) approach that excludes observations higher or lower 

than three SDs around the variable’s median value (Leys et al., 2013). Using the MAD method on the 

data resulted in the removal of very few outliers, not exceeding 5% removal for any of the soil 

properties; for some soil properties, no outliers were removed. Fig. 4 shows the comparative analysis 

of soil properties for the whole study area, without the geographical subdivision. In this case, only 

small significant differences were noticed between LUs. The soil texture analysis resulted in the 

classification of almost all the sampling sites as the sandy-loam soil type (Table1), according to the 

USDA soil texture triangle (Groenendyk et al., 2015), with a few soil samples classified as loam. 

Similar results were found when comparing LUs across geographical units (Table 2). One-way 

ANOVA tests for the original values showed that AWC and pH had no assumptions violated, and 

both showed no significant differences between LUs. Following this, the transformed data resulted in 
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SAR and SOM properties having no assumptions violated and presenting some significant differences 

between LUs, according to the Tukey HDS test, in which for both indicators, the natural ecosystem 

LU showed lower values than the other two LUs with significant differences. For most soil properties, 

the agro-ecosystems and grazing LUs showed significantly higher values than those of the natural 

ecosystem, notably EC, Cl, Na, and Ca + Mg, which may indicate soil salinity levels. 

Furthermore, the natural ecosystem showed significantly lower soil nutrient values (NO3, P, and 

K) than the grazing and agro-ecosystem LUs, which implies the presence of higher biotic activity 

(due to cropping and herding) in the soil of the latter two LUs. Nevertheless, the geographical 

subdivision emphasizes variations even better, where significant differences were shown between 

LUs for almost all soil indicators (Table 2). A significant difference was noticed between the agro-

ecosystem sites (located only in the northern and central areas), for which much higher values were 

measured in the northern fields than in the central ones for both salinity (EC, Cl, Na, Ca + Mg, and 

SAR) and soil nutrient (NO3, P, and K) indicators. The same soil properties, as well as the SOM, 

showed significantly higher values for the grazing and agro-ecosystem LUs than the natural 

ecosystem one. Moreover, significantly higher AWC was found in the central agricultural LU than 

in the other LUs. 

Table 2: The mean values of each soil property along with its respective land-use and geographical unit: (A) agro-

ecosystems; (B) grazing; and (C) natural ecosystems, each presented with its standard deviation and significant 

differences between treatments, represented with small letters (a, b, c).  

Natural ecosystems Grazing Agro-ecosystems Location Soil Properties  

37.07 ± 3.27a 39.6 ± 6.55a 35.04 ± 4.06a North AWC (%)  

34.24 ± 5.53b 35.96 ± 5.48b 40.83 ± 4.58a Center  

33.71 ± 5.43a 38.95 ± 7.72a - South  

8.08 ± 0.26a 8.1 ± 0.40a 7.99 ± 0.39a North pH  

8.01 ± 0.24b 7.96 ± 0.41b 8.3 ± 0.13a Center  

8.55 ± 0.28a 8.05 ± 0.27b - South  

5.82 ± 7.33b 13.58 ± 24.31a 25.85 ± 29.64a North EC (dS/m) 

3.21 ± 3.26b 16.8 ± 1954a 0.75 ± 0.15c Center  

9.22 ± 18.81b 18.54 ± 22.1a - South  

45.83 ± 81.66b 147.89 ± 309.15a 296.75 ± 358.69a North Cl (mg/l) 

23.65 ± 27.21b 171.05 ± 228.55a 1.45 ± 0.71c Center  

88.78 ± 201.25b 190 ± 275.17a - South  

29.86 ± 44.46b 79.66 ± 162.33a 103.32 ± 150.45a North Na (mg/l) 

21.2 ± 26.04b 103.78 ± 145.91a 1.21 ± 0.78c Center  

79.74 ± 177.49a 104.11 ± 150.63a - South  

34.8 ± 44.21b 56.02 ± 81.62b 139.75 ± 162.02a North Ca + Mg (mg/l)  

9.46 ± 8.05b 84.3 ± 99.9a 5.45 ± 1.7b Center  
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28.22 ± 51.86b 67.37 ± 74.96a - South  

3.37 ± 2.18b 13.46 ± 12.71a 4.9 ± 4.01b North SAR  

2.86 ± 1.45b 6.48 ± 5.73a 8.33 ± 3.1a Center  

6.52 ± 10.28b 22.06 ± 18.64a - South  

34.58 ± 41.21b 93.51 ± 111.76a 143.37 ± 154.91a North NO3 (mg/kg) 

26.92 ± 30.64b 94.62 ± 109.98a 14.82 ± 7.63c Center  

100.07 ± 220.28b 219.34 ± 193.783a - South  

9.53 ± 3.14b 56.52 ± 52.91a 13.62 ± 10.19b North P (mg/kg)  

13.55 ± 8.62b 31.68 ± 48.5a 17.87 ± 3.91b Center  

13.57 ± 5.37b 66.86 ± 51.62a - South  

0.5 ± 0.33c 6.41 ± 11.34a 2.1 ± 4.03b North K (ml/kg)  

0.42 ± 0.15b 3.1 ± 5.17a 0.48 ± 0.25b Center  

0.99 ± 1.41b 15.11 ± 17.71a - South  

1.61 ± 0.8b 3.18 ± 1.48a 3.17 ± 1.35a North SOM (%)  

1.94 ± 0.3b 2.59 ± 0.7a 2.44 ± 0.47a Center  

1.35 ± 0.51b 2.62 ± 1.61a - South  

59.32 ± 11.7a 59.35 ± 7.31a 56.15 ± 9.06a North Sand (%) 

62.7 ± 6.01a 63.1 ± 8.19a 45.98 ± 11.31b Center  

59.22 ± 16.46a 64.61 ± 7.03a - South  

27.75 ± 10.51a 24.58 ± 6.44a 27.24 ± 8.74a North Silt (%) 

22.86 ± 3.73b 23.1 ± 10.08b 38.83 ± 11.52a Center  

25.37 ± 14.89a 19.9 ± 5.45a - South  

12.91 ± 6.4a 16.06 ± 3.8a 16.6 ± 6.22a North Clay (%) 

14.43 ± 5.3a 13.8 ± 4.66a 15.18 ± 3.72a Center  

15.41 ± 6.4a 15.47 ± 3.41a - South  

Note: AWC: available water content; EC: electric conductivity; Cl: chlorine; Na: sodium; Ca + Mg: calcium and 

magnesium; SAR: sodium adsorption ratio; NO3: nitrate; P: phosphorus; K: potassium SOM: soil organic matter; 

significant differences between land uses are marked with small letters, in which values in each column with the same 

letter do not differ significantly when p < α (0.05), using ANOVA and Kruskal-Wallis analyses followed by Tukey and 

Wilcoxon tests. A: high values; b: medium values; c: low values. 

Pearson correlation coefficients (r) for the given soil indicators were calculated and are 

presented in Table 3. To understand the relations and to consider the more powerful correlations 

between properties, significant correlations (r ≥ 0.5) are marked in bold, and strong correlations (r > 

± 0.8) are marked in bold and with an asterisk (*). Multivariate correlations were also generated to 

avoid redundancy of properties. Very strong correlations were found between EC and Cl, Na, and Ca 

+ Mg (r = 0.99,r = 0.95 and r = 0.93; p < 0.01, respectively), between Cl, Na, and Ca + Mg (r = 0.94 

and 0.93; p < 0.01, respectively), between Na and Ca + Mg (r = 0.86; p < 0.01), and between sand 

and silt (r = -0.88; p < 0.01). 

3.2 Soil quality index (SQI) 
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 The SQI for each soil sample and their respective physical, biological, and chemical 

components was developed using the scores of the transformed soil properties’ values. The soil 

texture variables (fractional sand, silt, and clay) and Cl, Na, and Ca + Mg (which are essential 

indicators for soil salinity) were excluded from the SQI and PCA calculations due to high collinearity 

and possible model redundancy (Jolliffe et al., 2016). The PCA results showed that only three PCs 

had eigenvalues greater than 1 that explained 72.70% of the total cumulative variance of the original 

data (Table 4). PC1 accounts for 35.83% of the total variance and includes the pH, EC, and NO3 soil 

properties. For PC2, the contributory variance was 22.29%, and includes the AWC and P indicators. 

The third PC3, with a response to 14.58% of the variation, contains SAR, K, and SOM soil indicators 

within 10% of the highest loading values.  
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Figure 4: Boxplot representation of each soil indicator value under different land uses of the entire study area: agriculture, 

grazing, and natural. Note: available water content (AWC); electrical conductivity (EC); extractable chlorine (Cl); 

extractable sodium (Na); extractable calcium and magnesium (Ca + Mg); sodium adsorption ratio (SAR); extractable 

nitrate (NO
3
); extractable phosphorus (P); extractable potassium (K); and soil organic matter (SOM). 

Table 3: A matrix presenting the measured soil quality properties and their respective Pearson correlation coefficients 

for the study area. Correlations with highly significant differences of p ≤ 0.05 are marked in bold, whereas strong 

correlations (R ≥ 0.8) with very highly significant differences of p ≤ 0.01 were marked with (*). 
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AWC  

(%) 
pH 

EC 

(dS/m) 

Cl 

(mg/l) 

Na 

(mg/l) 

Ca + Mg 

(mg/l) 
SAR 

3NO 

(mg/kg) 

P 

(mg/kg) 

K 

(mg/kg) 

SOM  

(%) 

Sand  

(%) 

Silt  

(%) 

Clay  

(%) 

AWC (%) 
1.00         

     

pH 0.09 1.00             

EC (dS/m) -0.20 -0.55 1.00            

Cl (mg/l) -0.16 -0.55 0.99* 1.00           

Na (mg/l) -0.23 -0.42 0.95* 0.94* 1.00          

Ca + Mg (mg/l) -0.19 -0.56 0.93* 0.93* 0.86* 1.00         

SAR 0.44 -0.14 0.14 0.14 0.11 0.04 1.00        

(mg/kg) 3NO -0.09 -0.41 0.76 0.71 0.74 0.67 0.31 1.00       

P (mg/kg) 0.29 -0.24 0.06 0.05 0.01 0.001 0.41 0.19 1.00      

K )mg/kg) 0.12 -0.3 0.27 0.24 0.26 0.2 0.47 0.55 0.46 1.00     

SOM (%) 0.42 -0.38 0.53 0.54 0.36 0.48 0.39 0.39 0.38 0.33 1.00    

Sand (%) -0.02 -0.1 0.001 -0.02 0.02 -0.06 0.17 0.03 0.17 0.14 -0.06 1.00   

Silt (%) 0.08 0.12 -0.05 -0.04 -0.13 0.01 -0.16 -0.13 -0.17 -0.16 -0.03 -0.88* 1.00  

Clay (%) -0.12 -0.03 0.11 0.12 0.22 0.1 -0.02 0.18 -0.02 0.03 0.19 -0.34 -0.15 1.00 

Note: AWC: available water content; EC: electric conductivity; Cl: chlorine; Na: sodium; Ca + Mg: calcium and magnesium; SAR: sodium adsorption ratio; NO3: nitrate; P: 

phosphorus; K: potassium SOM: soil organic matter. 
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The SQI scores and their physical, biological, and chemical components for all three LUs are 

shown in Fig. 5. The mean overall SQI scores in the northern part are  

SQI = 0.65, 0.61, and 0.66 for the agricultural, grazing, and natural LUs, respectively. None of the 

three LUs were found to be significantly different from each other (χ2
(2) =1.53, p = 0.46). Both the 

biological (representing the SOM and NO3 soil properties) and the chemical components of the SQI 

for the natural area differed significantly from the rest, with lower SOM and NO3 components and 

higher values for the chemical properties. In the central part, the mean overall SQI scores were SQI 

= 0.72, 0.65, and 0.63 for the agricultural area, grazing, and natural LUs, respectively, with significant 

differences between all LUs for both overall SQIs and their components (χ2
(2) = 15.67, p < 0.05). The 

remaining southern part resulted in mean overall SQI scores of SQI = 0.61 and 0.59 for the grazing 

and natural LUs, respectively, with no significant differences. Within the southern SQI’s 

components, only the biological showed significant differences. 

Table 4: Results of the principal component analysis (PCA) of soil in the study area. Chosen principal 

components’ (PCs) scores for the model and their ranks are marked bold. 

 Scores PC1 Scores PC2 Scores PC3 

Eigenvalue 2.86 1.78 1.16 

Variance (%) 35.83 22.29 14.58 

Cumulative variance (%) 35.83 58.12 72.70 

AWC (%) 0.06 0.55 0.42 

pH 0.38 0.15 -0.23 

EC (dS/m) -0.46 -0.34 0.17 

SAR -0.19 0.41 -0.43 

NO3 (mg/kg) -0.50 -0.18 -0.20 

P (mg/kg) -0.25 0.51 -0.008 

K )mg/kg) -0.39 0.20 -0.40 

SOM (%) -0.34 0.16 0.57 

Note: AWC: available water content; EC: electric conductivity; SAR: sodium adsorption ratio; NO3: nitrate; P: 

phosphorus; K: potassium SOM: soil organic matter. 
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Figure 5: Scores of soil quality indices (SQIs) and their physical, biological, and chemical components for the three land 

uses, according to the study area’s geographical distribution: north, center and south.  Capital letters above the error bars 

represent significant differences between land uses. 

3.3 Soil properties and SQI correlations with soil spectroscopy 

The results of the PLS-R analysis are presented in Table 5. The results also include several 

latent variables (LV), coefficient of determination (R2), RMSEC, RMSECV, RPD, and significant 

VIP bands used for each soil property included in the model. Soil properties with excellent (RPD ≥ 

2.5 and R2 ≥ 0.80) and good (2 < RPD ≤ 2.5 and R2 ≥ 0.70) prediction scores are marked in bold and 

underlined in Table 5 and presented in Fig. 6, and include EC, Cl, Na, Ca + Mg, SAR, NO3, P, and 

SOM. Fig. 6 also presents each soil property and SQI soil-laboratory versus soil-spectroscopy 

regression scatterplots, including their respective RMSEC, RMSECV, R2, LVs, and RPD values. The 

overall SQI resulted in a good prediction value (R2 = 0.903, RPD = 2.46, RMSEC = 0.034, and 

RMSECV = 0.057). The significant diagnostic wavebands were calculated and identified by the VIP 

for each soil property and SQI value. For example, significant scores for the highly correlated soil 

salinity properties (EC, Cl, Na, Ca + Mg, and SAR) were found within the range of bands with strong 

peaks at 1363, 1896–1899, 1982–1984, 2266–2270, and 2346 nm. Sensitivity bands for biological 

properties, such as SOM, were found across the VIS-NIR-SWIR regions, with significant peaks at 

590–739, 853, 1364, 1899, 2014, 2203, and 2317 nm. For NO
3

–, the wavebands centered mostly 

within the SWIR region, peaking at 652, 1361, 1420, 1773, 1901, 1974, and 2346 nm. The SQI, 

combining attributes from multiple soil indicators, found strong sensitivity at 1434, 1749, 1841, 1901, 

1988, and 2343 nm.      
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3.4 Spectral classification of soil samples across LUs and sampling sites 

The classification of the soil samples’ spectral signatures across varied LUs and sampling sites 

is shown in Fig. 7, as well as the number of LVs, overall accuracy, and Kappa coefficient values. The 

PLS-DA classification across different LUs (Fig. 7A) resulted in high overall accuracy and Kappa 

coefficient values for both grouping methods. The separation between sampling sites (Fig. 7B) 

resulted in lower classification values, with an overall accuracy of 0.823, and a Kappa value of 0.802. 

In terms of classification capabilities, the PLS-DA is an accurate quantitative and qualitative 

approach for predicting variability between different LUs, and between sites to a slightly lesser 

extent. 

Table 5: Partial least squares-regression (PLS-R) analysis results for the Avdat region. The PLS-R distinguishes between 

the indicative spectral regions for each soil property. For each soil property in the PLS-R model, the number of latent 

variables (LV), the coefficient of determination (R2), the root mean squares error of calibration and cross-validation 

(RMSEC and RMSECV) of the predicted model, and the ratio of performance to deviation (RPD) are shown. Models 

with “excellent” (RPD ≥ 2.5 and R2 ≥ 0.80) and “good” (2 < RPD < 2.5 and R2 ≥ 0.70) values are marked in bold. Variable 

importance in projection (VIP) presents the highly significant wavelengths (nm) for each soil property with either 

excellent or good prediction value. 

 

Soil properties LV R2 RPD RMSEC RMSECV VIP 

AWC (%) 2 0.795 1.71 0.243 0.33  

pH 3 0.976 1.58 0.053 0.231  

EC (dS/m) 2 0.958 3.83 4.146 5.579 1363, 1898, 1982 

Cl (mg/l) 2 0.960 3.66 50.987 70.82 1836, 1899, 1983 

Na (mg/l) 3 0.949 2.88 25.709 45.299 672, 1363, 1896, 1984, 2346 

Ca + Mg (mg/l) 2 0.951 3.22 22.351 31.644 1744, 1897, 2003 

SAR 2 0.906 3.19 2.204 3.243 671, 1369, 1875, 2056, 2141, 

2196, 2270, 2344 

NO
3
 (mg/kg) 2 0.854 2.20 54.288 63.879 652, 1361, 1420, 1773, 1901, 

1974, 2346 

P (mg/kg) 2 0.866 2.19 10.864 16.352 450, 597, 1040, 1363, 1415, 1660, 

1808, 1884, 1915, 2130, 2254, 

2345 

SOM (%) 4 0.905 2.14 0.338 0.581 590-739, 853, 1364, 1899, 2014, 

2203, 2317 

Sand (%) 5 0.882 1.53 3.383 7.053  

Silt (%) 4 0.856 1.74 3.638 5.923  

Clay (%) 2 0.915 1.49 1.409 3.518  

Overall SQI 3 0.903 2.46 0.034 0.057 1434, 1749, 1841, 1901, 1988, 

2343 
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Figure 6: Partial least squares-regression (PLS-R) correlation scatterplots of predicted cross-validation (CV) values 

versus soil laboratory analysis values for: (A) several soil properties and (B) the soil quality index (SQI) among the three 

LUs in the Avdat region. RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-

validation; EC: electric conductivity; Cl: chlorine; Na: sodium; Ca + Mg: calcium and magnesium; SAR: sodium 

adsorption ratio; NO
3
: nitrate; P: phosphorus; SOM: soil organic matter. Each colored shape represents a land-use type: 

natural ecosystem (blue triangles), agro-pastoral grazing (red squares) and agriculture (green rhombuses). 
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Figure 7 – Partial least squares-discriminant analysis (PLS-DA) classification of initial 2150 bands spectral resolution 

laboratory spectroscopy for both (A) LUs and (B) sampling sites in the Avdat region. Each figure includes the number of 

latent variables (LV) used, overall accuracy (Acc), and Kappa coefficient (K
c
) values for each model. Colored circles 

indicate a 95% confidence level. Full names and the number of soil samples for all sampling sites are presented in Table 

1.  

4. Discussion 

The effect of LU activity on soil was detected, quantified, and evaluated through a soil survey 

and spectral analysis of different soil indicators for comparing soil properties across different land 

practices. This research integrated both methods by applying the NIRS method to explain variations 

among LUs. The use of the NIRS approach for soil quality assessment in an arid area, such as the 

Avdat region in the Negev Desert, has been limited. Significant differences between LUs and 

sampling sites were found for almost all soil indicators and SQIs, for laboratory analyses, soil spectral 

measurements, and their integration with NIRS. The correlation values between measured and 

predicted SQI values was R2 = 0.903, RPD = 2.46, RMSEC = 0.034, and RMSECV = 0.057. Spectral 

classifications resulted in high accuracy when segregating LUs, and with relatively lower values when 

comparing sampling sites. These results demonstrate the high effectiveness, predictability, and 

reliability of the NIRS model, even in such poor arid soils.   

 4.1 Soil Properties and the Soil Quality Index  

Assessment of soil quality was done through an understanding of natural and anthropogenic 

processes that affect expected soil processes, land use, and management practices, which are 

represented by a set of multiple different soil properties. This measurement and analysis process of 

multiple soil properties usually results in high costs and time consumption. The SMAF protocols were 

used as a guideline for selecting the soil indicators with adjustments that were applied to the physical, 
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biological, and chemical soil properties for developing a statistically modeled integrative SQI. This 

research sought to evaluate how soil quality and properties are affected under varying LU and 

management practices. To achieve this goal, data underwent processing and statistical methods, such 

as logistic transformations and PCA, to define the correct indicators with which to build the 

appropriate soil quality model. Since this study emphasized soil quality differences in an arid area, 

the soil indicators were transformed using a scoring function, in which the natural LU was set as a 

reference when comparing the other two anthropogenic LUs.  

The SQI scores showed that in most cases, significant differences were identified. When 

looking at the mean overall SQI scores, the central agricultural LU was the only one to show 

significantly higher values. This may imply better soil management of the central agro-ecosystem 

sampling sites, for which the chemical components (including soil salinity indicators and soil 

nutrients) had significantly higher values, indicating low saline and well-fertilized soils. This finding 

is well correlated with higher physical SQI component scores, represented by AWC, indicating well-

irrigated fields in the central part, unlike the SQI scores for agriculture in the north that showed an 

opposite trend (Gupta and Huang, 2014). As expected in an arid area, the AWC levels showed much 

lower scores in the natural LU in both the central and southern parts, whereas the northern agriculture 

LU showed relatively similar scores to those of the natural LU; this may indicate poor irrigation in 

comparison to the central part. For the biological properties represented by NO3
- and SOM, in all 

locations, the natural LU displayed significantly lower scores due to low vegetation abundance, 

fertilizers, and manure input to the soil and livestock activity (Haynes and Naidu, 1998). The high 

scores of this component for the grazing LU in all geographical units affirm the effects of herding, 

such as grazing, trampling, urination, and feces, particularly on the levels of pH (Smet and Ward, 

2006), soil organic matter (Smet and Ward, 2009), and nitrogen and phosphorus (Perkins and 

Thomas, 1993). 

The results demonstrate that soil quality under different LUs can be measured and distinguished when 

using an appropriate number of soil indicators. On the one hand, the ability to calculate and produce 

a reliable and accurate tool for soil quality assessment constitutes the SQI model’s significant 

advantage. On the other hand, the creation of such a tool remains expensive, include extensive soil 

analyses, and although accurate, it is still explanatory for the point-scale only. Therefore, the 

correlation to spectral data was performed to reduce the dependence on costly and prolonged soil 

sampling and laboratory analysis procedures.    

4.2 Soil properties and SQI correlations with soil spectroscopy 
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The results showed that the model managed to predict most soil properties accurately, as well 

as the SQI (Fig. 6B), when correlated against their respective spectral measurements using PLS-R 

analysis. In order to evaluate and compare each of the soil properties’ prediction performance, the 

RPD was calculated. The successful prediction performance scores were placed in “excellent” (RPD 

> 2.5), including EC, Cl, Na, Ca + Mg and SAR, and “good” (2 < RPD < 2.5) categories, including 

NO3
-, P, and SOM. The prediction accuracy of each soil property may vary under different locations, 

and environmental and practical conditions, such as topography, soil composition, time of the year, 

land and soil management, etc., as well as by sampling point group sizes and numbers and 

heterogeneous representations of the study area’s spatial variability. This can also be seen by the 

RMSEC and RMSECV values for each soil property. For example, indicators with high RPD scores, 

such as soil salinity properties (e.g., EC, Cl, Na, Ca + Mg and SAR), also have smaller calibration 

and cross-validation errors and prediction intervals than other properties, such as NO3
- and P. In this 

study, higher R2 and RPD values are well correlated with lower RMSEC and RMSECV values and 

present smaller prediction intervals, which confirm the success of the prediction models. RMSEC 

represents the error of the calibration model, and its error value is always smaller than the one of the 

RMSECV due to the larger number of observations, which minimizes error sizes (Wise et al., 2006). 

Trends can be seen in the PLS-R correlation plots in Fig. 6A. For example, as mentioned in the 

previous section, soil salinity properties showed significant differences in the agricultural LU between 

the northern and the central parts. Higher values, which correspond to the under-treated fields in the 

northern part, are distinct from the lower salinity levels in the well-managed fields in the center. This 

corresponds to the higher SQI scores shown in Fig. 6B. Similarly, SOM concentrations were 

significantly higher under the agricultural and grazing LUs, whereas in the natural soils, the spectral 

regression confirmed much lower levels. The same is true for soil nutrients such as NO3 and P. The 

prediction of overall SQI (Table 5, Fig. 6B) resulted in “good” performance values (R2 = 0.903, RPD 

= 2.46, RMSEC = 0.034, RMSECV = 0.057). This was made possible not only by each soil property’s 

contribution to the model but also by the interaction between them all and the spectroscopy data under 

an integrative index approach. 

The PLS-R analysis also generated the recognition of significant sensitivity bands for soil 

properties. The detection of differences between LUs and sampling sites based on spectral-specific 

bands can be attributed to chromophores. Chromophores are defined by their physical and chemical 

interactions with electromagnetic radiation, which affect certain spectral regions, notably in the VIS-

NIR (IUPAC, 1994), although many elements in the soil show sensitivity in the SWIR region as well 

(Ben Dor et al., 2015). Prevalent molecular bonds, such as C–H, N–H, C–O, C–N, and O–H groups, 

create different chromophores (Bushong et al., 2015; Fidêncio et al., 2002). Hence, they allow the 
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detection of a variety of soil properties, such as SOM, AWC, EC, pH, and soil texture characteristics 

(Cécillon et al., 2009; Gholizadeh et al., 2013; Knadel and Katuwal, 2018). The results of the highly 

significant soil salinity indicators within the 1350–1450 nm, 1830–1990 nm, and 2200–2350 nm 

spectral ranges are attributed to the presence of hygroscopic water and carbonate, which derives from 

the predominant sandy-loam soil texture (Table 2) (Ben Dor et al., 2015). Sensitivity bands for the 

biological properties, including SOM and NO3, were generated by the model as well, in which SOM 

peak wavelengths were found in several regions across the VIS-NIR-SWIR. For SOM, the presence 

of organic matter (i.e., plant tissues, humus, manure, etc.) is connected to the C–H bond and VIS-

NIR absorption peaks at the wavelength range of 590–739 nm, and microbial activity and water 

retained in the soil and in the organic matter itself generated the peaks at 1350–1450 nm and 2200–

2350 nm, respectively (Ben-dor, 2017). Although nitrogen is known for its lack of direct universal 

absorption wavelengths (Yong et al., 2015), it can be measured by indirect absorption of the soil 

features mentioned above. The model for NO3 found several sensitivity bands, notably at 562, 1420, 

1901, and 1974 nm, related to water absorbed in the organic compounds, and at 1773 nm, which can 

be related to free and/or structural iron content (Ben-Dor and Banin, 1995; Rinnan and Rinnan, 2007). 

The resultant bands for the SQI prediction comprise the most dominant contributors to the model’s 

variability and sensitivity. Hence, the strongest significances are attributed to water absorption, 

organic matter, and carbonate abundance, with their respective wavelengths previously mentioned.            

These results strengthen the use of NIRS as a reliable, non-destructive, and time-efficient tool 

for soil quality analysis. Soil spectroscopy stands out as an adequate and reliable approach for 

individual soil properties and the multivariate evaluation of SQI. Thus, PLS-R is suitable as a time- 

and cost-efficient method for analyzing a big dataset of soil samples under a broad set of variables 

testing soil quality. 

4.3 LU and sampling sites’ spectral classification 

 To test the capabilities of the spectral signatures’ classification in the model, a partial least 

squares discriminant-analysis (PLS-DA) was calculated for both different LUs and sampling sites. 

For the LU-based classifications, both the overall accuracy and the Kappa coefficient had an absolute 

value of 1. This indicates the success of the model to predict and classify the data accurately. For the 

sampling site classification (Fig. 7B), the performances were less accurate. Both the overall accuracy 

and the Kappa coefficient results were significantly lower than those of the LU-based classification, 

resulting in more significant spectral mixing among groups, possibly due to the smaller sampling 

size. Hence, it could be concluded that the success of the classification is affected by a set of 

influencing factors, including the spectral separability and variance between classes, the number of 
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grouping classes, the sample number, the spectral resolution, the noise-induced mistakes, and the 

modification of raw spectral signatures using PPTs. The PPTs transform and enhance the spectral 

separability between classes and strengthen the grouping factor within each category, hence, 

improving the classification accuracy of the model. In this study, the autoscale transformation and 

GLSW were applied and resulted in the best separation between classes, the smallest CV errors, and 

the highest classification accuracy.  

5. Conclusions 

In this study, we aimed to demonstrate the effects of LU activity, represented by human-

dominated LUs, on the natural landscape in an arid environment, by evaluating and comparing their 

soil quality. This goal was achieved by conducting a comparative analysis of both soil laboratory 

surveys and reflectance spectroscopy of the VIS-NIR-SWIR spectral regions. The ability to 

differentiate between physical, biological, and chemical soil properties plays a major role in the SQI 

model in recognizing and characterizing various soil processes in an integrative approach. The 

transformation scoring functions of soil attributes, as an adjustment tool for SQI, is a key principle 

that makes the SQI model suitable for monitoring the soil quality differences in soil properties 

between different LUs. The addition of the spectral dimension into the analysis has proved the 

effectiveness of NIRS as a comprehensive, non-destructive, and time- and cost-efficient method for 

monitoring and assessing soil quality and a variety of soil properties based solely on spectral 

differences. Results back these claims, in which the predicted SQI scores are well correlated with 

their calculated values (R2 = 0.903, RPD = 2.46, RMSEC = 0.034, RMSECV = 0.057). Almost all 

soil properties could be predicted with at least “moderate” performance value, although only those 

with “good” and “excellent” scores are likely to be used as model prediction accuracy representatives. 

The implementation of advanced mathematical and statistical methods, such as linear parametric 

transformations, PCA, PLS-R, and PLS-DA, helps to solve the challenges linked to the multi-

dimensional and high-collinearity of some variables in the analysis process. This advantage is 

reflected in the significant improvement of the results, demonstrating the soil property and SQI 

prediction accuracy. However, despite its excellent performance, the model is spatially limited to a 

site-specific point scale. To provide a complete accurate assessment of an entire region’s soil quality, 

upscaling of the spectral resolution would be necessary in future research. This would enable the SQI 

to be mapped at any given location, which would deepen the understanding of soil functions’ spatial 

trends and improve land management sustainability and conservation in the future.  
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Chapter 2: Soil quality index for assessing phosphate mining restoration in a 

hyper-arid environment 

 

Levi N, Hillel N, Zaady E, Rtem G, Ziv, Y, Karnieli, A., and Paz-Kagan T. 2020. Soil quality index for assessing 

phosphate mining restoration in a hyper-arid environment. Ecological Indicators. 125: 107571. (IF= 4.858; Category: 

Environmental science; Rank= 72/274 (Q1)). https://doi.org/10.1016/j.ecolind.2021.107571 

1. Introduction 

Mining contributes significantly to economic development at both the local and global levels. 

However, these contributions are frequently accompanied by extensive environmental damage, such 

as widespread land degradation, water, and air pollution, and other environmental disturbances (Feng 

et al., 2019). Mining entails the removal of vegetation, soil seed-banks, and topsoil layers, which 

alters the landscape, changing surface and subsurface hydrology, and causing soil quality 

deterioration (Martins et al., 2020). Therefore, the ecological restoration of mining areas presents a 

significant challenge (Zou, 2019). Mining restoration can be applied in three main techniques: (1) 

reclamation aims to stabilize the land surface and to return the surface to its original topography, 

mainly as an aesthetic improvement and to ensure public safety; (2) rehabilitation intends to transform 

the land into a different state than the original one by repairing the impact of mining and improving 

land productivity (Aronson et al., 1993; Mensah, 2015); and (3) restoration that seeks to return the 

land to its original function and conditions, thus restoring the ecosystem that was degraded or 

damaged to its previous state (Maiti, 2012). Although full recovery of the ecosystem function and 

structure is almost impossible in the short run, the recovery processes can be examined by selecting 

pre-defined indicators to evaluate restoration success (Bradshaw, 1997). The massive damage caused 

by mining has led many countries to establish restoration and rehabilitation policies (Maiti and 

Ahirwal, 2019). Therefore, selecting reliable indicators to assess restoration success is necessary for 

determining policy and decision making.  

Restoration processes include two types of practices: active and passive.  The active-type 

procedures are based on human intervention, such as topsoil and seedling application and plantation. 

The passive type is established upon natural regeneration processes (Bandyopadhyay and Maiti, 

2019). Many studies have proposed various indicators to evaluate mining restoration 

(Bandyopadhyay and Maiti, 2019; Borges et al., 2019; Toktar et al., 2016; Wang et al., 2018). These 

indicators are divided into six groups, including soil quality assessment, enzymatic activity, litter 

accumulation and decomposition, plant cover and species composition, faunal communities, 

microbial communities, and biomarkers (Bandyopadhyay and Maiti, 2019). One of the means for 

assessing mine restoration is by using the soil quality approach. Soil quality, which considers several 

https://doi.org/10.1016/j.ecolind.2021.107571
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physical, biological, and chemical soil properties, refers to the soil’s capacity to sustain and support 

its health and productivity within the related ecosystem (Karlen et al., 1997; Lal, 2011). Assessment 

of soil quality is often discussed in the context of agricultural activities (Doran and Zeiss, 2000; Lal, 

2015), whereas less attention has been given to other practices, such as mining (Borůvka et al., 2012; 

Menta et al., 2014; Muñoz-Rojas, 2018). Therefore, defining soil quality indicators by selecting soil 

properties for evaluating restoration practices that include adding topsoil is an essential step in 

determining their success. 

The soil quality index (SQI) is a diagnostic procedure to evaluate soil function and overall 

health. The SQI usually integrates physical, biological, and chemical properties into a single weighted 

number (Bastida et al., 2008). The selected soil properties need to be relevant to soil processes, 

consistent, reproducible, and relatively easy and affordable to sample (Bünemann et al., 2018; 

Moebius-Clune, 2017). The physical properties examined to assess restoration success are related to 

soil structure, including texture, bulk density, water holding capacity, infiltration rate, penetration 

resistance, available water content, and aggregate stability (Bandyopadhyay and Maiti, 2019). 

Biological properties refer to macro- and micro-organisms in the soil, such as microbial biomass, 

respiration, community composition, and enzymatic activity (Muñoz-Rojas, 2018), as well as 

processes related to soil organic matter and active carbon (Sheoran et al., 2010). The soil chemical 

properties include pH, salinity, nutrient availability (e.g., ammonium (NH4
+), nitrite (NO3

-), 

phosphorus (P), and potassium (K)), cation-exchange capacity, nutrient cycling, and heavy metals 

content (Dunger and Voigtländer 2005; Gómez-Sagasti et al., 2012; Melgar-Ramírez et al., 2012; 

Sheoran et al., 2010). The physical, biological, and chemical soil properties are interlinked, affecting 

biocrust and vegetation regeneration and growth. For example, low pH increases the solubility of 

naturally occurring micro-nutrients (e.g., Fe, Mn, Cu) to toxic levels, limiting most plants' growth in 

mining areas (Wong, 2003). Therefore, a holistic approach for assessing soil quality is a valuable 

asset in evaluating restoration success in mining areas. 

Each soil property should be carefully considered to avoid time-consuming and costly efforts 

while enabling an adequate restoration success assessment. Thus, the first step in developing an SQI 

is selecting the most suitable and relevant properties and creating a minimal dataset that best 

represents the soil characteristics and management practices (Asensio et al., 2013; Karlen et al., 2003; 

Puglisi et al., 2006). Once the minimal dataset is established, each soil property is then transformed 

into unitless scores, allowing the grouping of the selected properties to produce a single scaled value 

ranging from 0 to 1 (Andrews et al., 2002; Karlen et al., 2003). The SQI is then weighted by a PCA 

and/or summarized to calculate the overall SQI. The uses of SQIs are varied, and they are applied to 

assess agricultural, natural, and polluted soils (e.g., Armenise et al., 2013; Beniston et al., 2016; 
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Karlen et al., 2003; Levi et al., 2020; Masto et al., 2008; Paz-Kagan et al., 2015). Less frequently, 

these indices have been applied to determine management effects on restoration success in open-pit 

mines (Asensio et al., 2013; Mukhopadhyay et al., 2014; Pietrzykowski, 2014). Moreover, although 

the SQI has proved to be a highly reliable approach, it has seldom been applied in arid environments 

(Blecker et al., 2012).  Since arid soils are often alkaline and highly saline, have a low nutrient and 

organic matter content, and are generally more erodible (Mendez and Maier, 2008), restoration of 

degraded soil is a slow and complicated process (Yirdaw et al., 2017). All these characteristics 

highlight the challenges in the recovery of degraded mining areas in hyper-arid environments and the 

need to select appropriate soil properties to determine the overall SQI.   

The present study strives to evaluate the effects of restoration practices (i.e., topsoil 

restoration) on soil quality properties compared to adjacent natural areas in an open-pit phosphate 

mine in a hyper-arid region of Israel. It should be noted that the topsoil mostly contains soil organic 

matter (SOM), nutrients, and plant seed banks (Borůvka et al., 2012), and is the habitat of soil micro-

biota, all supporting the overall soil restoration (Bowker et al., 2005; Visser et al., 1984). Therefore, 

it has been shown that using topsoil as an amendment improves the physical, biological, and chemical 

properties for ecological soil restoration in mines (McGinnies and Nicholas, 1980; Mensah, 2015; 

Sheoran et al., 2010; Visser et al., 1984). Accordingly, our first goal was to find out whether an area 

to which the topsoil conservation method was applied resembles the adjacent natural area in terms of 

soil properties and overall soil quality, despite the extreme environmental and climatic conditions in 

this hyper-arid region. Our second goal was to evaluate the restoration success based on the SQI 

approach as a function of time by comparing the different restoration stages applied in various sites. 

Therefore, the hypothesis is that the topsoil method in mines would enhance overall SQI and 

restoration efforts, where the timespan since restoration would also affect the emerging processes due 

to the poor, slow soil development in such a hyper-arid environment.  

2. Methods 

2.1 Study area and mining restoration practices 

The study took place in an open-pit phosphate mine in the Negev Desert, Israel. The Zin 

phosphate mine includes 30.4 km2 that have been mined over the last four decades (Figure 1). It is 

one of several mining fields located at the eastern edge of the Negev Highlands. The local climate is 

hyper-arid with a long-term annual average rainfall of about 50 mm and high potential 

evapotranspiration rates. The long-term monthly average temperature is 26°C during the summer 

months of July and August, and 10°C during the winter month of January (Israel Meteorological 

Service, IMS). The geology of the study area is characterized by a sequence of the northeast to 
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southwest trending synclines and anticlines formed during the Upper Cretaceous geological period, 

about 72–84 MYA. Flooding of the area in geological times resulted in the deposition of marine 

sediments, reflecting high productivity (Soudry, 1992). The phosphate deposits are layered within 

sequences of charts, chalk carbonates, and limestone, located mainly at the northern edge of the 

synclines (Nathan et al., 1997). The rich phosphate deposit comprises approximately 2–6 layers (0.5–

1.5 m thickness), mixed with other (low-level) phosphate layers that are not relevant for mining. The 

phosphate deposit rock is from the same geological period and is part of the Mediterranean phosphate 

belt that extends from Turkey through Jordan to Israel. 

The Zin mining site has been active since the 1970s and is the largest of its kind in Israel. 

Until the 1990s, minimal efforts were made to rehabilitate the area. These efforts mainly included 

redistributing the overburden into the open pit and stabilizing the surface using road rollers to return 

it to its original topography and were prevalent until the beginning of the 1990s. However, for the 

past 20 years, the mining practices have changed towards a more ecological restoration approach that 

includes topsoil applications with the following steps. First, topsoil (upper 50 cm) is removed and 

kept separately. According to the original topography, the overburden is then returned to the open pit 

after mining and rearranged into a predetermined geo-morphological design. Finally, the topsoil that 

was removed from an adjacent open-pit mining area is placed over the fill material and turned over 

to increase the large stone cover (Cohen-Golan, 2017). This method enables a rapid placement of the 

topsoil rather than piling it up over time (Ghose, 2004). The restored site is returned to its original 

topography and is designed to slow runoff to create micro-climate conditions and diverse habitats, to 

enhance efforts to restore the soil micro-organisms, seed banks, and biocrusts. The applied restoration 

practice has a substantial impact on soil quality indicators, as seen in various sites at different 

timespans since restoration (Menta et al., 2014). In this study, three restoration sites of three different 

time periods since restoration were evaluated and compared to their adjacent natural areas, based on 

the SQI approach. 
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Figure 1: Schematic map with the location of the Zin phosphate mining field (A); Zin mining field 

topographic (B); and geological map (C) with the sampling blocks of the three study sites of Gov, 

Afik, and Hagor (red points). 

 

2.2 Soil sampling design 

Three restoration sites at the Zin open-pit phosphate mines were chosen for the study, 

representing both temporal and spatial variations. The restoration sites include the Gov, Hagor, and 

Afik sites. These sites were restored at different periods, in 2007, 2010, and 2014, respectively. Soil 

sampling in all sites took place during April 2017. The experimental design includes two pre-

designated plots of 50 × 100 m, divided into 100-m2 grid cells. To compare the restored sites with the 

adjacent natural area, we selected a nearby undisturbed natural site. Two additional pre-designated 

plots of 50 × 100 m divided into 100-m2 grid cells were established (Figure 1). Five soil samples were 

collected from the four corners and the center of the grid cells in each plot for each block, resulting 

in a total number of 60 soil samples of 30 restored and 30 natural samples, classified by their 

respective restoration site. For each of the soil samples, 15 soil properties were selected to evaluate 

the overall SQI. Samples were collected in paper bags from a depth of up to 20 cm and transferred to 

the laboratory for wet chemistry analysis. Therefore, the soil samples represent only the upper layer 

of the topsoil to evaluate the restoration processes and biocrust development in this hyper-arid region. 

In addition, samples for biocrust analysis were collected in 64-cm2 Petri-dishes. Penetration and 

infiltration rates were measured in the field for all soil samples.  
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2.3 Selecting soil properties  

Overall, 15 soil properties were selected due to their relevance to mining restoration success. 

These were divided into physical, chemical, and biological properties. Table 1 shows the selected 

properties and their importance for the soil quality assessment in evaluating restoration success. The 

physical properties include soil texture (sand, silt, and clay fraction) for determining water storage 

and the infiltration rate. The available water content (AWC) was used to assess water availability in 

the soil, water storage capacity, and drought resistance. AWC is the difference between water stored 

in a field capacity and at the wilting point (Schindelbeck et al., 2008). The infiltration rate indicates 

hydrological processes, such as runoff, infiltration, and soil moisture. Dryland soils support rich 

microphytic communities that are critically important for developing and establishing biocrust cover, 

which regulates water delivery and retention, reduces surface ponding, inhibits runoff and sediment 

production, and improves moisture storage (Eldridge et al., 2020). Yet, biocrust are also clearly 

physical features of the soil, given that the component organisms are in direct content with the upper 

soil surface layer (Bowker et al., 2018). Thus, biocrusts development regulates hydrological 

processes and plays an essential role as ecosystem engineers (Jones et al., 1997), enhancing 

ecosystem quality in a hyper-arid context. The biological properties include soil organic matter 

(SOM), related  to nutrient storage, and water availability in the soil. Soil protein and polysaccharides 

are related to micro-organisms and biocrust development. The chemical soil properties include pH, 

electrical conductivity (EC), and its derivatives, comprising sodium (Na), calcium and magnesium 

(Ca + Mg), and chlorine (Cl), which are related to soil salinization and salt content. Also, phosphorus 

(P), potassium (K), nitrate (N-NO3
-), and ammonium (N-NH4

+) were extracted. These elements are 

related to nutrient content and use efficiency, which are necessary components for plant regeneration, 

growth, and health.  

Table 1 depicts the selected soil properties and the analytical method applied for their analysis in 

the laboratory. Soil texture refers to a mixture of mineral particle sizes and the fraction of sand, silt, 

and clay in the evaluated soil, based on Schindelbeck et al. (2008). Thus, soil texture is not part of 

the SQI since it is a relatively constant and mostly descriptive parameter (Karlen et al., 2003). 

However, soil texture is essential to interpret most soil properties in the SQI. Available water content 

(AWC) was measured by calculating the differences between saturated soil (i.e., water content at 

field capacity) and the permanent wilting point based on soil physical and hydraulic properties 

according to soil texture (Farrick et al., 2019). The infiltration rate was measured in-situ using a mini-

disk infiltrometer (Madsen and Chandler, 2007). Soil organic matter (SOM) was measured by oven-

drying the soil samples for 3 h at 105°C, followed by burning the soil at 500°C for  another 2 h and 

weighing the soil samples before and after burning (Casida et al., 1964). Potassium chloride 
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extractions were measured to evaluate the extractable nitrate (NO3
-) and ammonium (NH4

+) content 

(Drinkwater et al., 2015). Soil proteins were measured by the Lowry method, extracted by 0.1 N 

NaOH (Lowry et al., 1951), and polysaccharides were measured by sulfuric acid extraction. Soil 

nutrients (P, K, Na, Ca, Mg) were analyzed by inductively coupled plasma mass spectrometry (ICP-

MS), using an ammonium acetate and acetic acid solution (Brady and Weil, 1999). The pH values 

were determined by using a pH electrode probe. Finally, EC was measured using an EC meter on 

well-stirred soil.  
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Table 1. Soil properties for soil quality assessment in open-pit phosphate mines, their functions, their laboratory chemical analysis methods, and their measurement units. 

Indicator Reason for selection Unit Method 

Physical     

Soil texture (sand, silt, and 

clay) 

Related to SOM levels, defines water storage in the soil and infiltration rate.  % Particle size suspension 

Available water content 

(AWC)  

Explains potential soil water availability, plant available water storage 

capacity, and drought resistance 

% Oven drying 

Infiltration rate Explains potential runoff, soil erosion and leaching, soil porosity, and 

compaction 

cm/sec Mini-disc infiltrometer (Madsen and 

Chandler, 2007) 

Chemical     

pH Influences plant growth, toxicities, and metals availability, affecting the 

available macro and micro-nutrients 

 Water-soil suspension 

Electrical conductivity Defines soil salinity, affecting plant growth  dS/m Water-soil suspension 

Cl Defines soil salinity, affecting plant growth  mg/L  

Na Defines soil salinity, affecting plant growth  mg/L  

Ca + Mg Defines soil salinity, affecting plant growth  mg/L  

N-NO3 N containing life-building blocks, N release mg/kg       ICP-MS 

N-NH4 N containing life-building blocks, N release mg/kg  

Phosphorus  (P) Influences plant productivity, helps in mineralization of SOM, vital nutrients 

to plant development  

mg/kg  

Potassium (K) Influences plant productivity, helps in mineralization of SOM, vital nutrients 

to plant development  

mg/kg  

Biological     

Soil organic matter Source of nitrogen, phosphorus, and sulfur, improves aggregation and 

infiltration, increases water and nutrient availability 

% Organic carbon furnace method 

(Schulte, 1995) 

Protein Microbial abundance and activity and development of soil biological crust  mg/g Lowry method, 0.1N NaOH (Lowry 

et al., 1951)  

Polysaccharides Microbial abundance and activity and development of soil biological crust mg/g Anthron, sulfuric acid (Dische, 

1955) 
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2.4 Soil quality index development 

SQI development involves several statistical steps. The first step is to transform all properties 

into unitless scores ranging from 0 to 1. This process is necessary to standardize each soil property 

so they will have comparable units. However, before applying the transformation functions (Figure 

2), outlier detection and removal and missing data  completion based on a regression imputation was 

applied (Dumedah and Coulibaly, 2011). The median absolute deviation (MAD) approach for 

removing a minimum number of outliers to exclude only the most extreme values was used. Thus, 

only outliers that were either higher or lower than three standard deviations around the median were 

removed (Levi et al., 2020; Leys et al., 2013), resulting in a less than 5% reduction for each soil 

property. The second step involves calculating the SQI (Andrews et al., 2002; Paz-Kagan et al., 2015; 

Rezaei et al., 2006; Sharma et al., 2005). This step was performed by assigning one of three scoring 

functions to each indicator according to its performance and based on previous literature (Figure 2; 

Karlen et al., 2003; Masto et al., 2008; Mukhopadhyay et al., 2014). To exclude highly correlated 

indicators from the SQI analysis, Wetschoreck et al. (2020) developed the predictive power score 

(PPS) method that normalizes the various pairwise relationships to their local baseline (values range 

from 0 to 1), both linear and non-linear correlations of higher dimensions, and also presumes 

asymmetry, where the two halves of the prediction matrix account for the direction of the relationship 

(i.e., X~Y ≠ Y~X). Pairs of predicted scores with PPS ≥ 0.5 were excluded. The PPS calculation 

scheme was imported from python into R (Zavarella, 2020), using the "reticulate" package (Ushey et 

al., 2020).  
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Figure 2. Scoring functions for data standardization, assigning the appropriate term and function to 

each soil property. Si is the soil property score, x is the parameter value, a is the soil property 

average, and b is 2 -2 of the data. Graphs adapted from Karlen et al. (2003). AWC: available water 

content, SOM: soil organic matter, EC: electrical conductivity, K: potassium, and P: phosphorus. 

The second step involves calculating the SQI (Andrews et al., 2002; Paz-Kagan et al., 2015; 

Rezaei et al., 2006; Sharma et al., 2005). The SQI calculation is based on a principal component 

analysis (PCA) on the scored data. The variance of the data is binned into statistically distinct low-

covariable classes, named principal components (PCs), where each PC accounts for a portion of the 

model's variance, and the minimal number of the most explanatory PCs is selected to reduce the 

dimension and complexity of the model (Jolliffe et al., 2016). A PCA was calculated for all 

restoration sites combined and also for each separately. PCs with eigenvalues (i.e., weighted 

proportion of variance) greater than 1 and that also explain more than 5% of the model's variation 

were included in the model. The highest loadings, defined as having an absolute value within 10% 

of the highest factor loading for the soil indicators, were used to indicate the most influential PC on 

each soil property (Masto et al., 2008). However, the contrast among PCs for highest loadings wasn't 

distinct enough for some soil properties, which might create ambiguity arbitrary factor loadings than 

a significant relationship in the correlation matrix. Therefore, a varimax rotation PCA was applied to 

the results of the initial PCA (Kaiser, 1958). The rotation of the projected correlations enhances the 

variations, maximizes the contrasts among the selected amount of PCs, and maintains the total 

cumulative proportion of variance. The third step includes the final SQI calculation by dividing the 

proportion of each rotated principal component variance by the cumulative variance to generate the 

weights, which are then multiplied by the number of the highest correlated variables related to each 

rotated PC (Masto et al., 2008). Each indicator is then multiplied by its corresponding weight to 

calculate the overall SQI (Eq. 1). The scored values were multiplied with their weighted values for 

calculating the soil quality index (SQI): 

𝑆𝑄𝐼 =  ∑ 𝑃𝑊𝑖 × 𝑆𝑖 ′

𝑛

𝑖=1

 (1) 

where PWi is the PCA weighting factor, and Si’ is the scoring function’s ranks of each soil property, 

indexed as i, and n is the total number of properties.  

2.5 Statistical analysis 

Once the scores and the SQI were calculated, the differences were tested for their significance 

between the treatments (natural vs. restored) for each soil property in each site and between sites, as 
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well as for the overall SQIs and their respective physical, biological, and chemical components. The 

sampling pattern includes spatially various sites that subsume multiple self-dependent plots with low 

variances within each. Therefore, the mixed-effects nested design analysis of variance (ANOVA) 

model (Schielzeth and Nakagawa, 2013) was used to examine significant differences, where sites and 

treatments were determined as fixed factors and the nested plots were defined as random. The 

ANOVA was first used to explore the overall success of the ecological restorations and their adjacent 

natural areas. Second, to measure differences between the individual study sites for each group of 

indicators—physical, biological, and chemical—and overall SQI scores. The basic assumptions of 

the ANOVA for normal distribution of the model's residuals and homoscedasticity of the scored 

properties were tested. The residual distribution histogram results of the mixed-effect ANOVA tests 

for the individual scored soil indicators are shown in Appendix A.  For properties that had their 

assumptions unmet (p < 0.05), a non-parametric rank-transformation approach was used, where the 

scored values were gradually rated from lowest to highest scores (Conover and Iman, 1981) and were 

then compared using the nested ANOVA test. Multiple comparisons among all factor levels were 

calculated using the Tukey HSD test. The level of significance for the soil indicators and SQI was 

determined at  < 0.05. The regular and the varimax rotation PCA, and the nested design ANOVA 

tests were performed using JMP® Pro software version 15.0.0 (SAS Institute Inc., Cary, NC, USA). 

3. Results 

3.1 Soil quality indicators 

The results of the predictive power score (PPS) matrix for the scored soil properties show that 

Cl and Na were highly correlated with EC (PPS(cl→EC) = 0.7 and PPS(Na→EC) = 0.68, respectively) and 

with each other. Although Mg + Ca correlation with EC was lower than 0.5 (PPS(cl→EC) = 0.48), due 

to its relatively close value, it was joined with Cl and Na to be excluded from further discussion to 

prevent collinearity and redundancy in the SQI model (Figure 3). Also, relatively strong correlations 

were found for NO3 and EC (PPS(NO3→EC) = 0.4) and Cl (PPS(NO3→Cl) = 0.34), but eventually, it 

remained in the SQI calculation model. In total, four out of the initial 15 properties were omitted from 

the SQI development, including the Cl, Na, and Ca + Mg that were highly correlated to EC and 

represent salinity indicators.  The soil texture was not part of the SQI since it is a relatively constant 

and mostly descriptive parameter, so soil texture and its fractions were not included in the SQI 

calculation.  Table 2 displays the results of the significant differences found for the scored soil 

properties in the nested ANOVA for the individual and combined restoration sites (i.e., Gov, Hagor, 

and Afik) compared to their adjacent natural areas. Most scored indicators were eligible for the nested 

ANOVA test using their scored values, whereas five were tested based on their ranked-transformed 

values, including pH, N-NH4
+, N-NO3

-, K, and proteins, as their basic assumption for normal 
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distribution of the model's residuals was unmet (Appendix A). The number of significantly different 

soil properties was reduced in response to the time since restoration. SOM was the only parameter to 

be consistently significant for all sites, and infiltration was significantly different at the younger 

Hagor and Afik sites. When comparing all restored plots and their natural counterparts, significant 

differences were found for four out of 11 indicators, including infiltration, SOM, polysaccharides, 

and P.  

Figure 4 presents the box-whisker plot of all scored soil indicators, comparing each study site 

with its adjacent natural area. The spatial variability has no consistent increasing or decreasing pattern 

between the different sites and the time since restoration. The restored and related natural plots also 

displayed different trends within the study sites, mainly in the Afik study site. Despite being the most 

recently restored, the AWC, SOM, protein, and polysaccharide indicators showed generally higher 

scores than those of Hagor and Gov. In most cases, two study sites—Gov and Hagor—exhibited 

similar trends to each other with regard to their natural sites. The Hagor site presented a unique trend 

of slightly, yet not significantly, higher scores in the restored plots for some of the indicators, 

including AWC, proteins, and polysaccharides. The SOM indicator’s differences were significant in 

all study sites, showing a similar trend in comparing restoration sites and their adjacent natural sites, 

with a higher SOM value in the natural sites. A high infiltration rate was found in all restored sites, 

with lower scores than their natural counterparts. 

 

Figure 3. Predictive power score (PPS) matrix results for all the scored soil properties. Darker shades 

of blue represent stronger correlations between each pair of variables. The colored frames represent 

the associated physical, biological, and chemical components of the soil properties. SQI: soil quality 

index, AWC: available water content, SOM: soil organic matter, EC: electrical conductivity, K: 

potassium, P: phosphorus, and Poly: polysaccharides. 
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Table 2. Significant differences (p-values) between sites' restoration and their adjacent natural areas. 

Bold values are statistically significant (α < 0.05) 

Soil properties  
Gov natural 

vs. restoration 

Hagor natural vs. 

restoration 

Afik natural vs. 

restoration 

All-natural vs. 

restoration 

AWC 0.988 0.766 0.424 0.963 

Infiltration 0.848 0.002 0.005 0.005 

pH 0.518 0.888 0.994 0.481 

EC 0.837 0.868 0.986 0.748 

N-NH4 0.487 0.999 0.017 0.125 

N-NO3 0.029 0.985 0.984 0.548 

P 0.779 0.043 0.994 0.024 

K 0.245 0.763 0.275 0.442 

SOM 0.037 0.000 0.000 0.000 

Protein 0.252 0.691 0.818 0.314 

Polysaccharides 0.694 0.611 0.008 0.033 

Significant 2 3 4 4 

 

Figure 4. Box-whisker plot showing the value distributions and outliers of each of the soil properties 

in the natural and restored study sites. Red asterisks represent significant differences (p < 0.05) 

between treatments within sites. AWC: available water content, SOM: soil organic matter, EC: 

electrical conductivity, K: potassium, and P: phosphorus; n refers to the natural area, and r refers to 

restored. 

3.2 Soil quality index 

Figure 5 shows spider diagrams that demonstrate the differences between the natural and 
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restored plots. Values are given in unitless scores ranging from 0 to 1, based on the transformed 

properties' mean values. A combination of all sites shows noticeable differences in the physical, 

chemical, and biological soil properties. When observing the study sites separately, varying patterns 

emerge. In the Hagor and Afik sites, there is a clear difference between the spider patterns for each 

treatment, whereas, at the Gov site, the scoring values are relatively similar for most soil properties. 

Performing the PCA and applying the weights on the scored data translated the values into SQI scores, 

which allowed us to compare the topsoil restoration treatment with the natural soils relative to one 

another. 

 

Figure 5.  Spider diagrams showing the differences between the natural and restored plots in unitless 

scores. AWC: available water content, SOM: soil organic matter, EC: electrical conductivity, K: 

potassium, and P: phosphorus. 

Based on the transformed physical, biological, and chemical data using the three scoring 

functions (Figure 2), the SQI was developed (Eq. 1). The SQI model was applied for each site 

separately and all sites together. The PCA for all sites combined showed that four PCs had 

eigenvalues greater than one and had a greater proportion of variance than 5%. However, PC5 had a 

very close eigenvalue of 0.993. Therefore, it was incorporated into the accounted PCs, which 

eventually explained 68.1% of the total cumulative variance. The respective enhanced varimax 

rotated factor loadings for the five PCs are presented in Table 3. The PCA models showed that Gov 
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had three, Hagor had five, and Afik had three PCs that met the two conditions, respectively. The 

models had an overall cumulative variance for the Gov, Hagor, and Afik sites of 65.9, 77.5, and 

67.2%, respectively. The detailed varimax rotation PCA results for each site separately are shown in 

Appendix B. 

Figure 6 presents the integration of the physical, biological, and chemical scores and the 

overall SQI for all three sites, independently and combined. The results reveal the significant 

differences between Gov, Afik, and all sites between natural and restored sites. The mean SQI scores 

for all sites combined were higher in the natural than in the restored sites (F(1,48) = 6.005, p < 0.05), 

with 0.617 and 0.536 SQI values, respectively. Our results suggest that all the individual restored 

sites suffer from a reduction in their overall SQI values and reveal a trend in accordance with the time 

passed since restoration, where the oldest restored site of Gov scored highest (0.652 and 0.574 for 

natural and restored, respectively; F(1,16) = 2.642, p < 0.05), followed by Hagor (0.615 and 0.552; 

F(1,16) = 0.712, p = 0.057), and the most recently restored site, Afik, was ranked (0.608 and 0.507; 

F(1,16) = 10.364, p < 0.05). The biological attributes presented significant differences between the 

natural and the restored areas, as found for the Gov, Afik, and all sites together (F(1,48) = 8.189, p < 

0.05). The physical properties presented significant differences between the natural and the restored 

areas in Afik and all sites together (F(1,48) = 4.031, p < 0.05). In the chemical properties of the Hagor 

site, the soil indicators have significant differences between the natural and restored sites (F(1,16) = 

4.039, p < 0.05).  

 

Table 3. Varimax rotation PCA results of all sites for scoring soil properties from the restored and the natural sites 

combined. The bolded soil properties refer to the absolute highest loading within 10% of the factor loading. The overall 

model had a cumulative percentage of 68.1%. AWC: available water content, SOM: soil organic matter, EC: electrical 

conductivity, K: potassium, and P: phosphorus. Bold numbers refer to the highest factor loading for each soil indicator 

by its corresponding PC. 

 PC1 PC2 PC3 PC4 PC5 

Eigenvalues 2.579 1.541 1.348 1.029 0.993 

Proportion of variance  15.089 14.289 13.863 13.271 11.596 

Cumulative percentage  15.089 29.378 43.241 56.512 68.108 

No. of properties 2 4 2 2 1 

AWC Score 0.128 -0.065 -0.672 0.395 -0.313 

Infiltration Score -0.226 -0.606 0.005 0.393 0.420 

pH Score 0.129 0.490 -0.392 0.135 0.364 

EC Score 0.662 0.100 -0.429 0.034 -0.041 

N-NH4
+ Score -0.058 -0.116 0.813 0.222 0.078 

N-NO3
- Score 0.325 0.608 -0.148 0.230 -0.101 

P Score 0.055 0.029 0.214 -0.023 0.827 

K Score -0.199 0.747 0.037 -0.002 0.116 

SOM Score 0.025 0.069 0.008 0.847 0.074 

Protein Score 0.859 -0.007 0.010 0.037 0.099 

Polysaccharide Score 0.497 0.060 0.068 0.556 -0.372 
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Figure 6. Stack graph of indicator groups for the restoration practice for each site and their 

combination. An asterisk under the site name represents an overall significant difference between the 

restoration practices. The asterisks within the colored bars show significant differences between the 

groups of indicators (i.e., biological, chemical, and physical). 

4. Discussion 

Mining restoration depends on the practices used and the time since the restoration was applied 

(Andrés and Mateos, 2006). Evaluating restoration success using the SQI approach could be used as 

a management tool, mainly in an arid environment where the vegetation is sparse. Most soil recovery 

processes are long-term (Costantini et al., 2016; Mukhopadhyay et al., 2014). Most studies on 

ecological mining restoration have focused on forest, grassland, and wetland ecosystems, while fewer 

have examined arid regions (Guan et al., 2019). Extensive literature exists on indicator selection for 

evaluating the ecological restoration success and recovery rate after mining (Martins et al., 2020). 

Several physical, biological, and chemical soil properties were suggested for developing the SQI to 

assess the effect of topsoil restoration practices (topsoil compared to the natural area) in phosphate 

mines in a hyper-arid region. The properties were selected and analyzed to determine the restoration 

efforts and identify spatial and temporal variations in the successional processes (Costantini et al., 

2016). Significant differences in the SQI were found between several soil properties’ scores and 

between SQI models in the different sites, indicating a general trend of higher SQI in the natural sites 

than in the restored ones. It was found that the biological indicators were the most affected properties 

with significant differences in Gov, Afik, and all sites together, followed by the physical ones with 

significant differences in, Afik and all sites, and the chemical components showing significant 
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differences only in Hagor site. Therefore, it is suggested that the selection of soil properties should 

focus more on soil biological and physical properties, which could help evaluate phosphate mines' 

restoration in an arid region.  

4.1 Indicator selection: a minimum dataset for soil quality measurement   

SQIs are useful tools to assess restoration efforts and evaluate the recovery rates (Muñoz‐Rojas 

et al., 2016). Although some indicators could be more relevant than others for capturing soil 

differences (Bastida et al., 2008; Muñoz‐Rojas et al., 2016), using one soil property constitutes a 

critical limitation (Muñoz‐Rojas et al., 2016). Consequently, the SQI is increasingly used to estimate 

restoration success,  determine the direction of change with time, and highlight the differences 

between restoration practices (Shukla et al., 2006). However, creating a minimum dataset by selecting 

indicators that can sufficiently and accurately assess mining restoration efforts is a complicated matter 

(Bünemann et al., 2018; Muñoz‐Rojas et al., 2016). Our results demonstrate the need for further 

refinement after initially selecting a minimum dataset to reduce additional dataset complexity and 

adequately represent the soil quality conditions for arid regions. The soil properties with significant 

differences between mining areas and natural areas were infiltration rate, SOM, and polysaccharides. 

Previous studies have shown that SOM is a reliable soil indicator, pointing to mining restoration 

success and land degradation (Bodlák et al., 2012; Chaudhuri et al., 2015). SOM was one of the soil 

properties that showed a clear scoring reduction trend in the topsoil mining sites compared to the 

natural areas. Moreover, the infiltration rate showed a similar pattern in all sites with a higher 

infiltration rate in the restored sites, resulting in lower scores than natural sites. N-NH4
+, P, and K 

were selected as potential nutrient availability indicators since they are key nutrients, although only 

a small fraction may be available to plants (Andrés and Mateos, 2006). These are essential for the 

plant regeneration necessary for successful restoration processes in arid regions. Eventually, only P 

was found significant in the integrated model, whereas N-NH4
+ was significantly different in the Afik 

site only, and K had no notable differences in any of the sites.  

Polysaccharides and proteins indicate biocrust development, which plays a considerable role in 

stabilizing the soil surface, affecting the infiltration rate that reduces erosion by water and wind in 

arid regions (Zaady et al., 2016). The development of biocrusts, composed of cyanobacteria, moss, 

and/or lichens, could be used as an indicator for mining soil recovery and restoration success (Dangi 

et al., 2012; Mukhopadhyay et al., 2017; Muñoz‐Rojas et al., 2016). Restoration of mining areas 

accelerates the development of biocrust structures and functions to assess and speed up the recovery 

of a degraded ecosystem (Zaady et al., 2016). Soil micro-organisms’ diversity and abundance provide 

surrogates for soil recovery. Polysaccharides are related to soil microbial biomass that is extensively 

used in SQI assessments (Mager and Thomas, 2011). Usually, increases in polysaccharides are 
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considered beneficial to soil development in arid regions (Mendoza-Aguilar et al., 2014). However, 

additional analyses, such as  phospholipid fatty acid (PLFA), could be used to assess the difference 

in the microbial community over time and describe its structure and composition (Bandyopadhyay 

and Maiti, 2019; Ben-David et al., 2011; Dungait et al., 2011). Cyanobacteria are some of the most 

dominant life forms found in biocrusts in arid environments, including the Negev Desert (Chamizo 

et al., 2019; Ferrenberg et al., 2015; Karnieli et al., 1999; Zaady et al., 2010). Although biocrust only 

occupies the upper few millimeters of the soil profile (Dixon, 2009), cyanobacteria greatly influence 

different soil properties and the overall SQI in various ways. Cyanobacteria stabilize the soil surface, 

control runoff, infiltration, and percolation, increase the soil moisture content, and improve the 

nutrient content and soil fertility (Belnap, 2006; Chamizo et al., 2019; Kuske et al., 2012), which are 

all highly related to soil recovery after mining. Studies have shown that biocrust development affects 

hydrological processes in drylands, resulting in a decline in infiltration rate and soil moisture 

(Eldridge et al., 2020). These soil features are affected by the biocrust community composition and 

the soil properties (e.g., soil texture). Among the microbial communities, cyanobacteria are the most 

resilient (Belnap and Eldridge, 2001) and can survive on minimal and irregular amounts of water 

(Mazor et al., 1996), typical conditions in arid regions. Eventually, polysaccharides were significantly 

lower in the Afik site and in the combined model than restored and natural plots.  These could be 

related to the time passed since restoration, where the Afik site is the youngest restored site—referring 

that the time passed since restoration wasn’t enough for the biocrust to recover. 

4.2 Evaluation of restoration practice with time since restoration  

Soil quality estimations in restored mining areas either compare pre-and post-recovery 

conditions or disturbed land and nearby undisturbed land to assess the restoration process's rate and 

quality (Sheoran et al., 2010). By comparing the restoration practices between both the natural and 

restored sites, significant differences were seen across indicator groups (mainly biological and 

physical indicators) and overall SQI. Only a few significant differences between the natural and 

restored sites, as a result of topsoil restoration, were previously documented (Muñoz‐Rojas et al., 

2016). When observing each study site separately, significant differences between the natural and 

restored sites were found. The topsoil restoration practices mitigate the destructive severity of mining 

(Albert, 2015), thus, reducing the differences between the restored and natural plots, seen mainly at 

the Gov plot. In drylands, topsoil restoration is a critical practice due to the unpredictable climatic 

conditions with the potential for long and frequent droughts, along with the severely limited 

abundance of seeds, nutrients, and micro-organisms that are considered to be key elements in soil 

restoration, limit plant development, and growth in arid regions (Golos et al., 2016; Muñoz‐Rojas et 

al., 2016).  



 

47 
 

We found that topsoil restoration enabled partial recovery of the Hagor and Gov sites. The 

period between the ecological restorations may have promoted natural restoration processes, as shown 

in the Gov site. However, the slightly higher levels of AWC, proteins, and polysaccharides in the 

restored plots shown at the Hagor site can be attributed to higher site suitability. Thus, low 

polysaccharide concentrations indicate a delay in biocrust development over the past 20 years. The 

initial process of soil recovery begins by establishing physical, followed by biological indicators, and 

therefore, the topsoil amendment method is crucial for promoting soil restoration efforts. Further 

study could test the differences in restoration practices with and without topsoil and their implications 

for soil quality and restoration success. Thus, integrating physical, chemical, and, more importantly, 

biological indicators necessary to evaluate soil recovery in arid environments. 

4.3 Assessment of soil quality index  

The SQI combines various soil properties to provide a single value representing the overall 

soil quality. The SQI approach, based on the varimax rotation PCA scores, was found to be valid for 

assessing mine restoration in arid regions (Asensio et al., 2013; Mukhopadhyay et al., 2014; 

Pietrzykowski, 2014). Defining restoration practices in mining areas required identifying specific soil 

indicators associated with soil quality (Menta et al., 2014). Our results show significant differences 

in most study sites, mainly due to biological indicators and physical soil indicators, such as SOM, 

infiltration rate, and polysaccharides, with a significant difference in these indicators between the 

natural and restored plots, as shown in the SQI (Figure 6). In contrast, the group of chemical indicators 

showed no significant differences between most sites for the overall soil quality (except for Hagor). 

The soil indicators used for this task may differ depending on local conditions and the disturbance's 

extent. Therefore, we concluded that restoring the physical biological soil indicators are complex 

process in mine restoration. These required rehabilitating the biological indicators of the biocrust 

community, which is crucial in hyper-arid areas.   Biocrust has a multifunctional effect on soil function 

and structure. They regulate soil nutritional stocks through N fixation (Elbert et al., 2012), influencing 

hydrological processes (Chamizo et al., 2016) stabilizing soil, among other aspects. In general, our 

results reflect a slow recovery of the SQI in the restored sites, demonstrating that achieving the quality 

of the natural areas requires a long-term recovery process. Moreover, the physio-biological indicators 

were found to be more suitable for reliably assessing mining restoration practices. 

5. Conclusions  

This study took place in an open-pit phosphate mining area, which is located in a hyper-arid 

environment. Developing an SQI and incorporating physical, biological, and chemical properties of 

soil restoration practice was accomplished. In conclusion, using the SQI method on the different 
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restored sites shows reduced soil quality compared to the natural sites. The biological and physical 

indicators demonstrate the importance of the topsoil restoration method for recovering the biocrust 

community. For the overall SQI, chemical indicators alone cannot significantly distinguish between 

restoration practices, either because of natural processes or the change in soil chemical characteristics 

during mining practices in such an arid environment. Given these results, further SQI assessments 

and restoration follow-ups should focus on the vitality and evolution of the soil microbial community 

and biocrust development after using the topsoil method in restored phosphate mines. Moreover, the 

groups of biological and physical indicators should be considered as the primary tools in any SQI 

assessment to estimate the recovery success of mining sites in arid areas, where vegetation is scarce 

and soil recovery is a long-term process.  
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Appendix A. Residuals distribution histograms of the mixed-effect ANOVA tests for the individual scored soil indicators. 

The red curves represent the normal distribution for each of the indicators. Properties that had their residual normal 

distribution unmet (p < 0.05) were then transformed using the non-parametric rank-transformation method (Conover and 

Iman, 1981). ANOVA: analysis of variance, SW-W: Shapiro-Wilks W-test, AWC: available water content, EC: electrical 

conductivity, K: potassium, NH4: ammonium, NO3: nitrate, P: phosphorus, and SOM: soil organic matter. 
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Appendix  B. PCA results for all soil properties from the: (1) Gov, (2) Hagor, and (3) Afik sites compared to their natural 

sites. Abbreviation: AWC: available water content, EC: electrical conductivity, P: phosphorus, K: potassium, SOM: soil 

organic matter and bold numbers refer to high factor loading for each PC. 
 

(1) Gov model PC1 PC2 PC3 

Eigenvalues 3.113 2.178 1.958 

Proportion of variance  28.308 19.806 17.802 

Cumulative percentage 28.308 48.114 65.916 

No. of properties 5 3 3 

AWC Score 0.155 0.720 -0.268 

Infiltration Score -0.711 0.170 -0.188 

pH Score 0.832 0.274 -0.289 

EC Score 0.032 0.821 0.047 

N-NH4
+ Score -0.511 -0.153 0.288 

N-NO3
- Score 0.823 0.269 -0.142 

P Score 0.255 0.384 0.460 

K Score 0.916 -0.007 0.242 

SOM Score -0.214 0.237 0.820 

Protein Score 0.017 -0.192 0.820 

Polysaccharide Score 0.051 0.739 0.215 

 

(2) Hagor model PC1 PC2 PC3 PC4 PC5 

Eigenvalues 2.018 1.967 1.783 1.578 1.181 

Proportion of variance  18.352 17.889 16.21 14.353 10.739 

Cumulative percentage  18.352 36.241 52.451 66.804 77.543 

No. of properties 3 3 2 2 1 

AWC Score 0.811 0.018 -0.362 -0.209 0.114 

Infiltration Score -0.189 0.699 0.084 -0.441 0.020 

pH Score 0.050 0.085 0.039 0.015 0.892 

EC Score 0.757 0.143 -0.045 0.010 -0.376 

N-NH4
+ Score -0.839 0.134 -0.140 -0.063 -0.208 

N-NO3
- Score -0.045 -0.153 -0.145 0.932 -0.059 

P Score 0.011 0.774 0.319 0.229 -0.023 

K Score -0.050 -0.119 0.874 -0.005 -0.090 

SOM Score -0.157 0.141 0.536 0.587 0.303 

Protein Score -0.124 -0.812 0.260 0.136 -0.131 

Polysaccharide Score 0.038 -0.342 -0.617 0.227 -0.258 

 

(3) Afik model PC1 PC2 PC3 

Eigenvalues 2.703 2.372 2.318 

Proportion of variance  24.575 21.563 21.078 

Cumulative percentage 24.575 46.138 67.216 

No. of properties 4 3 4 

AWC Score 0.007 0.595 -0.589 

Infiltration Score -0.052 0.403 0.588 

pH Score -0.437 -0.395 -0.286 

EC Score 0.967 -0.130 -0.018 

N-NH4
+ Score -0.021 0.123 0.622 

N-NO3
- Score 0.913 0.128 -0.016 

P Score -0.115 -0.177 0.761 

K Score 0.643 -0.157 -0.394 

SOM Score -0.120 0.897 -0.039 

Protein Score 0.536 0.172 0.610 

Polysaccharide Score 0.107 0.873 0.222 
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Chapter 3- Airborne imaging spectroscopy for assessing land-use effect on soil 

quality in drylands 

Levi, N, Karnieli A, and Paz-Kagan, T. (2022). Airborne imaging spectroscopy for assessing the land-use effect on soil 

quality in drylands. ISPRS journal of photogrammetry and remote sensing.186: 34-54.  (IF=8.979; Category: geosciences 

multidisciplinary; Rank: 5/200 (Q1)). https://doi.org/10.1016/j.isprsjprs.2022.01.018 

Table 1 – abbreviations list and acronyms used in the chapter. 

 

 

Abbreviation Definition Abbreviation Definition 

ANOVA Analysis Of Variance NIRS 
Near-Infrared Reflectance 

Spectroscopy 

ASD Analytical Spectral Device NO3¯ Nitrate 

AWC Available Water Content OA Overall Accuracy 

BRDF 
Bidirectional Reflectance 

Distribution Function 
P Phosphorus 

BREFCOR BRDF Effect Correction PC Principal Component 

Ca + Mg Calcium and Magnesium PCA Principal Component Analysis 

Cal Calibration PLS-DA 
Partial Least Squares-

Discriminant Analysis 

Cl Chlorine PLS-R Partial Least Squares-Regression 

EC Electrical Conductivity PPS Predictive Power Score 

EMR Electromagnetic Radiation Pred Prediction 

EPSG 
European Petroleum Survey 

Group 
R2

adj 
Adjusted Coefficient of 

Determination 

F(df) 
F-statistic and Degrees of 

Freedom 
RBF Radial Basis Function 

FWHM Full Width at Half Maximum RHS Runoff-Harvesting System 

GPS Global Positioning System RMSE Root Mean Square Error 

ICP-MS 
Inductively Coupled Plasma-

Mass Spectrometer 
RPD Ratio of Performance to Deviation 

IMU Inertial Measurement Unit RPIQ 
Ratio of Performance to 

Interquartile Range 

IQR Interquartile Range SAR Sodium Adsorption Ratio 

IS Imaging Spectroscopy SD Standard Deviation 

K Potassium SMAF 
Soil Management Assessment 

Framework 

Kc Kappa Coefficient SNR Signal to Noise ratio 

LTER 
Long-Term Ecological 

Research 
SOM Soil Organic Matter 

LU Land-Use SQI Soil Quality Index 

LULC Land-Use Land-Cover SSQI Spectral Soil Quality Index 

LV Latent Variable SVM-R 
Support Vector Machine-

Regression 

MAD Median Absolute Deviation SWIR Shortwave Infrared 

MDS Minimum Data Set Val Validation 

Na Sodium VIP Variable Importance in Projection 

NDVI 
Normalized Difference 

Vegetation Index 
VIS Visible 

NIR Near-Infrared   

https://doi.org/10.1016/j.isprsjprs.2022.01.018
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1. Introduction 

Based on some scenarios, the global population might reach up to 12 billion people by the end of 

the century (UN-WPP, 2020). Consequently, providing food security and essential ecosystem services is 

necessary to maintain basic livelihood requirements, including habitat sustainability, shelter, and other 

necessities  (FAO, 2019). Their provision often coerces the transformation of natural ecosystems into 

human-dominated lands on a global scale (Foley, 2005). Intensive land-use (LU) changes threaten 

environmental conditions and their ability to support ecosystem services sustainably. Such conditions 

include regulating natural aspects of climate, water, soil, and air quality (Metzger et al., 2006; Tscharntke 

et al., 2005). LU changes often engender soil degradation processes and soil quality deterioration 

(Chesworth, 2008), and soil erosion (Alewell et al., 2019). These degradation processes undermine 

effective and sustainable land management and its related LU practices (Crist et al., 2017). Soil quality 

is determined by the ongoing soil physical, biological, and chemical processes occurring above and 

below the ground, affecting soil conditions (Idowu et al., 2008). In arid regions, the soil system under 

LU alteration is greatly susceptible to land degradation, such as soil salinization, erosion, structural 

modification, and organic matter and nutrient imbalance, mainly due to low organic resource and water 

availability (Lal, 1997).  

Thus, appropriate soil quality evaluation approaches are necessary to monitor and mend the 

overall soil capacity to support ecosystem services (Doran and Parkin, 1994), especially for soils in 

dryland regions. Some soil quality assessment protocols, such as the comprehensive assessment of soil 

health (CASH; Idowu et al., 2008; Moebius-Clune et al., 2016), focus more on agriculture applications. 

Alternatively, the Soil Management Assessment Framework (SMAF; Andrews et al., 2002; Viscarra 

Rossel et al., 2006; Wienhold et al., 2009) is a method that allows flexibility in terms of selecting ad-hoc 

soil indicators under varying environmental conditions. The adoption of SMAF enables the soil quality 

model to be adjusted to different environments and management applications, as demonstrated in 

previous studies (Levi et al., 2021; Lima et al., 2016; Paz-kagan et al., 2016). It is based on selecting a 

minimum data set (MDS), comprising a minimum number of soil indicators (i.e., soil properties) for 

defining and quantifying soil conditions and function while avoiding model over-complexity. By doing 

so, the soil quality models are reproducible, easy to sample, and maintained at a relatively low cost 

(Andrews et al., 2004; Karlen et al., 1997). Once the MDS is selected, the indicators are transformed into 

a normalized score using different transformation functions, ranging from 0–1, then integrated into an 

index representing the overall soil quality index (SQI) value. In the context of ecological monitoring, 

resulting overall scores imply the degree of changes in their uninterrupted natural vicinity rather than 
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providing an absolute independent score. 

Despite their accuracy, laboratory soil analyses and field surveys are still costly, time-consuming, 

and labor-intensive (Paz-Kagan et al., 2014). In the past few decades, the development and improvement 

of the near-infrared reflectance spectroscopy (NIRS) method have proven its efficiency as a rapid, 

reproducible, and relatively inexpensive method in remote sensing, in general, and soil spectroscopy, in 

particular, at the point scale. Spectroscopy measures the interactions between the studied surface (e.g., 

soil sample) and the incident electromagnetic radiation (EMR) by examining highly accurate point 

spectroscopy reflected signal that includes the visible (VIS, 400–700 nm), near-infrared (NIR, 700–1100 

nm), and shortwave infrared (SWIR, 1100–2500 nm) spectral regions (Ben-Dor and Banin, 1995). Soil 

spectroscopy enables the detection of unique spectral absorption and reflection features (i.e., 

chromophores) in the spectral signature of a soil sample caused by the vibrations, stretching, and bending 

responses of soil minerals' elemental and molecular structures to EMR excitation (Ben Dor et al., 2015; 

Demattê et al., 2007). The use of spectroscopy in soil studies has been on the rise, proving its efficiency 

and expedience for various soil properties (Bogrekci and Lee, 2005; Freschet et al., 2011; Gholizadeh et 

al., 2013; Romsonthi et al., 2018; Stafford et al., 2018). In recent years, efforts were made to collect, 

analyze, and establish worldwide open-access soil spectral libraries that store soil samples, including 

several fundamental soil properties analyses and their spectral attributes from 92 countries, to facilitate 

decision-support systems for farmers and land managers on global, continental, and national levels 

(Chabrillat et al., 2019; Demattê et al., 2019; Orgiazzi et al., 2018; Shi et al., 2014; Viscarra Rossel et 

al., 2016). These could be used to train and validate different soil models based on airborne and satellite 

imaging spectroscopy. 

Soil spectroscopy was also most valuable for predicting SQI and other integrative assessment 

indices (Askari et al., 2015; Cécillon et al., 2009; Cohen et al., 2006; Kinoshita et al., 2012; Levi et al., 

2020; Paz-Kagan et al., 2015, 2014; Vågen et al., 2006; Veum et al., 2017, 2015). For example, Kinoshita 

et al. (2012) estimated a three-category SQI in Western Kenya. Veum et al. (2015) estimated SMAF 

indicators and scores using VIS-NIR spectra and auxiliary laboratory data. Paz-Kagan et al. (2014) 

developed the spectral soil quality index (SSQI) to evaluate the overall SQI based solely on spectroscopy. 

Levi et al. (2020) predicted scores of soil attributes and SQI levels with reasonable accuracy. Currently, 

the use of hyperspectral data for SQI prediction usually corresponds to a more locale extent since it 

requires training the model with ground-truthing data according to the local soil characteristics. These 

applications were mainly demonstrated in temperate climates where the land-use had been changed into 

a few limited LU practices, mostly agricultural systems. The broad regional implementation is still a 

challenge due to the high soil spatial/geographical heterogeneity, on the one hand, and a large number of 
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soil samples needed for developing such models. Moreover, studies on soil spectroscopy applications for 

integrative soil monitoring in hyper-arid, arid, and semi-arid environments are rare (Levi et al., 2020; 

Paz-Kagan et al., 2015; Paz-Kagan et al., 2014). In the current research preceding this study, the 

integration of soil spectroscopy to assess the SQI method was performed in an arid region characterized 

by a water-scarce, nutrient-poor, and sparsely populated environment, with limited human activity (Levi 

et al., 2020).  

Several statistical approaches incorporate spectroscopy for the regression-based spectral 

prediction of soil properties. Some algorithms are quite standard, such as partial least squares-regression 

(PLS-R; Rosero-Vlasova  et al., 2016), support vector machine-regression (SVM-R; Shi et al., 2015), 

geographically weighted regression (GWR; Chen et al., 2019), and multiple linear regression (MLR; 

Rossel and Behrens, 2010). In recent years, additional models have been used in soil spectroscopy, such 

as random forest (RF; Wang et al., 2021), artificial neural network (ANN; Ayoubi et al., 2011), and other 

types of statistical estimation methods. Also, deep-learning NN-based feature training frameworks have 

been increasingly used to predict various soil properties spectrally in recent years (Padarian et al., 2019; 

Singh and Kasana, 2019; Tsakiridis et al., 2020; Yuan et al., 2020). Such deep-learning architectures 

usually require large sets of previously pre-processed data to reduce the risk of over-fitting (Srivastava 

et al., 2014). Therefore, conventional machine-learning regression models, such as PLS-R and SVM-R, 

are adequate for the task of a small-size sampling dataset (Deiss et al., 2020; Thissen et al., 2004). The 

SVM-R is a well-known method applied in soil spectroscopy that showed previous promising results (de 

Santana et al., 2021; Thissen et al., 2004; Xuemei and Jianshe, 2013). The statistical approaches affirm 

the accuracy, time-efficiency, and reliability of spectroscopy for soil quality assessment to determine a 

spectral sensitivity analysis. These could be applied for individual soil indicators or as integrated indices 

as SQI. However, the constraints of the soil spectroscopy approach for large-scale monitoring are 

specified in local point-scale and site-specific studies. Despite its solid quantitative capabilities, these are 

limited by the relatively small number of sampling points from a particular study area (Ong et al., 2019).   

A limited number of studies have developed soil spectroscopy applications for assessing soil 

quality in dryland regions. For example, Levi et al. (2020) have successfully applied a spectroscopy-

based model of 14 physical, biological, and chemical soil properties, with different accuracy levels, to 

calculate the statistically integrated SQI based on the SMAF protocol. Yet, one of the limitations of point 

spectroscopy is that it is related to the point scale and does not account for the spatial variability of the 

soil. Imaging spectroscopy (IS) compiles a large number of contiguous spectral image bands (>50) as an 

indirect method to assess soil biochemistry (Ben-Dor et al., 2009). IS method can be applied to soil 

properties and quality assessments at improved spatial and spectral resolutions, moving from the point-
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scale to a larger geographical area. The regression models can be used to IS for soil property predictions 

at a broader scale, based on the integration of soil laboratory analyses and hyperspectral image 

measurements. In addition, due to many narrow wavebands, IS can be used to highlight unique spectral 

features, such as the absorption and reflectance of diagnostic wavelengths from the image itself, similar 

to laboratory spectroscopy analysis (Goetz et al., 1985). For multivariate analysis, sensitivity spectral 

band selection is derived from the calculated regressions via a variable importance analysis that detects 

the most effective wavelengths in the correlation process (Cécillon et al., 2008). 

Some large-scale mapping methods for different sets of soil properties have been developed. For 

example, the Land-use/Cover Area frame statistical Survey (LUCAS) topsoil dataset from the European 

soil data center (ESDAC) provides a mapping of a great variety of soil properties across Europe and over 

25 of its countries based on collected and stored soil libraries, partially including spectral measurements 

(Ballabio et al., 2019). The Australian Commonwealth Scientific and Industrial Research Organization 

(CSIRO) developed the GlobalSoilMap project, and the data are managed as part of the Australian Soil 

Resource Information System (ASRIS). This gives access to the "soil and landscape grid" that provides 

a range of soil and landscape attributes and map products across the country (Johnston et al., 2003). Geo-

statistical approaches were also being used to assess soil quality at the regional scale (Rinot et al., 2019). 

For example, Svoray et al. (2015) suggested a method based on vicarious statistical evaluation and 

interpolation to quantify soil health in a spatially explicit manner over a large area. However, the 

incorporation of imaging spectroscopy for soil quality mapping encapsulates significant advantages, such 

as integrating a large set of soil properties, ground-truthing data, rigorous analytical and statistical 

evaluation, and the continuous precise mapping over large extents.  

Moving from point spectroscopy to image spectral analysis reflects on many challenges that need 

to be considered. On the practical level, the transition of the SQI model from the local to the regional 

scale requires a shift from point spectroscopy to an IS approach. Such problems and limitations include 

a low signal-to-noise ratio (SNR), large and complex datasets, signal interferences from the atmosphere 

and mixed pixels of the non-soil area due to pixel size (e.g., vegetation and soil crust), the effects of the 

bidirectional reflectance distribution function (BRDF), and the necessity of highly skilled personnel for 

processing and analyzing the large datasets. Moreover, airborne IS is still expensive and requires a 

complex infrastructure to operate (Ben-Dor et al., 2009; Chabrillat et al., 2019). Despite these drawbacks, 

the use of airborne IS to study properties and processes related to soil has emerged and grown 

substantially in the last couple of decades (Chabrillat et al., 2019), through its mapping and monitoring 

of multiple aspects such as soil salinity (Ben-Dor et al., 2002; Zhang et al., 2019), soil composition (Li, 

2020; Žížala et al., 2017), soil organic carbon (Stevens et al., 2006; Tziolas et al., 2020), soil moisture 
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(Haubrock et al., 2005; Diek et al., 2016), soil erosion and stability (Schmid et al., 2005, 2016), soil 

contamination (Davies and Calvin, 2017; Pelta et al., 2019), and many other soil aspects. 

Paz-Kagan et al. (2014) demonstrated the use of 14 soil indicators in determining the variability 

of soil attributes among three different LU types that changed from managed to unmanaged and vice 

versa. They developed the spectral soil quality index (SSQI) based on the point spectroscopy of standard 

laboratory soil analyses. The SSQI integrates all relevant scored SQI indicators and then classifies them 

according to their spectral differences. In their following work, Paz-Kagan et al. (2015) have successfully 

applied and upscaled the SSQI method using the IS approach. They managed to map the overall SQI 

over several agricultural fields in two different study sites under various LUs and treatments, based solely 

on the spectral differences between each LU, achieving strong classification values (overall accuracy of 

0.92 and 0.82 at the Israeli and German sites, respectively). The current study attempts to develop the 

SQI based on IS using machine-learning applications applied to an arid environment. 

The current study attempts to develop the SQI based on IS using machine-learning applications 

in an arid environment characterized by a water-scarce, nutrient-poor, and sparsely populated 

environment. The novelty of the research lies in the combination of traditional chemical soil laboratory 

analyses and the spectral dimension based on imaging spectroscopy (IS) methods to comprehensively 

evaluate soil quality. It incorporates AisaFENIX airborne IS with advanced statistical analyses to study 

the ability to determine the soil state on a large scale by measuring the effects on the overall quality of 

different LUs in dryland regions. Such applicability in extreme conditions like the Avdat region, with 

various LUs, will exemplify its relevance in temperate climate areas. To accomplish our goals, we 

considered only the upper layer of the soil due to the ability of the sensor to detect only the soil surface 

layer. Soil properties change with the soil profile over time under field conditions with responses to soil 

moisture range. However, the hyperspectral airborne system's limitation could capture only the upper 

soil surface area. 

Thus, based on the significant impact LUs have on their natural arid soil surroundings, the main 

goal of this research is to evaluate their effects over the study area using IS applications. Specifically, 

the objectives include (1) demonstrating the capability of IS for continuous mapping of multiple soil 

properties and the integrated SQI over the whole study area; (2) examining the combination of both 

conventional soil chemical laboratory survey and the contribution of the spectral dimension to the 

regression-based prediction capabilities of IS; and (3) evaluating the effect of LU change on the soil 

health patterns in arid regions that include grazing, agriculture, and runoff-harvesting systems (RHSs) 

for agricultural and forestry purposes. 
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2. Material and methods 

2.1. Study area 

The current study follows the work conducted by Levi et al. (2020) in the same study area of the 

Avdat region (Fig. 1). The site is a sparsely populated arid region in Israel’s central Negev Desert, and 

also serves as a long-term ecological research (LTER) station (Fig. 1A; Olsvig-Whittaker et al., 2012). 

The study area extends over about 24 km2. The landscape is characterized by barren, steep, and rocky 

terrain in the western and southern parts, which moderates further northward along the basin of the 

ephemeral Zin stream, and it consists of sparse vegetation cover (Ohana-levi et al., 2018). As a region 

characterized by hot, dry summers and cold, low-precipitation winters, soil water retention, available 

organic material, and soil nutrients are mainly concentrated along the Zin Stream and its basin and are 

greatly dependent on seasonal rains and runoffs (Ziv et al., 2014). The more developed soil columns are 

located northwards in the upper parts of the watershed and the lower and flatter parts. These regions 

consist of generally finer grain-sized colluvium, mostly of loess soil type that can be found as far as 

several meters deep in the depressed segments, situating it within the aridisol soil order (Yair and Danin, 

1980). 

The region comprises four LU types, of which three are human-dominated formations: single-

family agricultural farms (primarily consisting of grapevine and olive cultivation), RHSs for agricultural 

and afforestation purposes, and agro-pastoral grazing, mainly of sheep and goats, that takes place in the 

vicinity of Bedouin villages. The RHSs include two types of human-made landscape structures scattered 

within or adjacent to the Zin stream. The first is a larger runoff-ponding catchment hedged by soil levees 

named limans, primarily used for afforestation into small-scaled cultivation and as a means of flooding 

mitigation while improving the soil's productivity by capturing essential environmental resources, 

notably organic matter, nutrients, sediments, and seeds (Paz-Kagan et al., 2019). The limans were mainly 

developed at the beginning of the 60s by the Jewish  National Fund (JNF) as an afforested grove. The 

second is streambed stone-wall terraces that retain and regulate runoff flow, infiltration rates, and soil 

erosion, where some terraces include ancient systems that are still active to this day, while others are 

abandoned and breached (Yizhaq et al., 2020). The fourth is uninterrupted natural land (Ohana-levi et 

al., 2018; Paz-Kagan et al., 2017). These ancient terraces cover large dry riverbeds in the Zin Stream’s 

basin, a systematic human intervention in arid landscapes. Terracing was introduced in the Roman (63 

BCE–324 CE) and Byzantine (324–640 CE) eras to develop a fertile agro-ecosystem in arid regions. 

They aimed to improve water retention and soil stabilization and reduce hydrological connectivity and 

erosion, all of which assists in increasing the primary and secondary productivity of agroecological 
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systems (Beckers et al., 2013). 

 

Figure 2: (A) Location of Avdat region within the Negev Desert, Israel. (B) Soil sampling sites, their respective 

land-use class, and the Zin Stream channel positioned over the hyperspectral image. Fully detailed information for 

all sampling sites is presented in Levi et al. (2020). RHS: runoff harvesting system. 

2.2 Research approach and structure 

Figure 2 presents the general approach of the research  framework and assimilates multiple field 

survey procedures, laboratory analyses, and data processing and interpretation. The research structure 

includes three steps: (1) in-field soil  sampling, chemical soil laboratory analyses, and the SQI 

development; (2) airborne hyperspectral image acquisition, pre-processing, and spectral data extraction; 

and (3) IS approach integration of the chemical soil laboratory analysis and spectral data extracted from 

the IS using SVM-R modeling and large-scale mapping prediction. The following sections describe the 

methodology performed in each step. 
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Figure 2: Study flowchart of the three steps for developing the soil quality assessment model for regional-scale imaging 

spectroscopy (IS) prediction mapping for individual soil properties and the overall soil quality index (SQI) in Avdat region 

study area.  

 

2.3 Step 1: Soil sampling, analysis, and SQI development 

2.3.1 Soil sampling and laboratory analysis 

The soil collection for further physical, biological, and chemical soil surveys took place in April 

2017, initially including 114 soil samples from the upper soil layer (15 cm) of the four LUs taken from 

14 sampling sites scattered across the study area covered by the hyperspectral image (Fig. 1B). Sampling 

locations were defined based on an initial stratified random sampling design (Kothari, 2004), integrating 

variables such as elevation, lithology, and land-use land-cover (LULC) classification (Ohana-levi et al., 

2018). Soil samples were collected from the uppermost 0–15 cm from the ground surface, and each was 

assigned a location using a handheld GPS device. Further elaboration on the sampling sites and 

methodology can be found in Levi et al. (2020). 
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The laboratory soil survey incorporated the analyses of 12 soil properties, following the SMAF 

protocol (Wienhold et al., 2009), and their respective procedures and methods are specified in Table 1. 

The selected properties include physical indicators of soil texture (fractional sand, silt, and clay), 

indicating the morphology and fragmentation of the soil. The available water content (AWC) was 

calculated by the difference between water holding at field capacity and the soil's permanent wilting 

point (Scrimgeour, 2008). This is a critical factor for water availability to plants and soil organisms, 

greatly affected by the changing soil texture types (Groenendyk et al., 2015). The biological indicators 

included soil organic matter (SOM), which initiates soil processes such as nutrient storage, enzyme 

activity, carbon stocking, and salinity level moderation (von Lützow et al., 2007). The extractable nitrate 

(NO3¯) represents the nitrogen available to the plant in the soil, a fundamental resource for organic life-

building blocks (Pansu and Gautheyrou, 2006). The chemical indicators include pH, electrical 

conductivity (EC), extractable chlorine (Cl), extractable sodium (Na), extractable calcium and 

magnesium (Ca + Mg), and the sodium adsorption ratio (SAR). These properties serve as reliable 

indicators for soil alkalinity and as precursors of ongoing soil salinization and sodicity processes, on the 

one hand, and soil micro-aggregation, on the other (Rahimi et al., 2000). The extractable phosphorus (P) 

and extractable potassium (K) are valuable soil nutrient constituents of proteins and nucleic acids, which 

are essential components in plant tissue and are crucial in regulating different processes in plants. 

Table 2: Soil quality properties and their respective affiliation, units of measurement, and analysis 

methods. A comprehensive review of the applied laboratory survey methods can be found in Levi et al. 

(2020). 

Indicator Unit Method 

Physical properties 

Soil texture (fractional sand, silt, and 

clay) 
- 

Particle size suspension (Kettler et al., 2001) 

 

Available water content (AWC) % Oven drying and weight difference (Scrimgeour, 2008) 

Biological properties 

Extractable nitrate (NO3¯) mg/kg Potassium chloride extractions (Norman and Stucki, 1981) 

Soil organic matter (SOM) % Organic carbon furnace method (Casida et al., 1964) 

Chemical properties 

Acidity level (pH) - 
1:1 water-soil suspension extraction (Roades, 1982) 

Electrical conductivity (EC) dS/m 

Extractable chloride (Cl) mg/l 

ICP-MS (Brady and Weil, 1999) 

Extractable sodium (Na) mg/l 

Extractable calcium and magnesium 

(Ca + Mg) 
mg/l 

Sodium adsorption ration (SAR) - 

Extractable phosphorus (P) mg/kg 

Extractable potassium (K) mg/kg 

ICP-MS: inductively coupled plasma-mass spectrometer.  
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2.3.2 Developing the SQI model 

The development of the SQI includes several statistical and mathematical procedures. One of the 

main goals of this study is to map SQI and soil properties over the whole study area. Therefore, the 

calculated SQI was developed for the four LUs and their physical, biological, and chemical attributes. 

First, a minimal amount of outliers were removed, using the median absolute deviation (MAD) method 

(Leys et al., 2013). The MAD excludes values greater or lower than three standard deviations (SDs) from 

each of the soil indicators' central median values, resulting in the removal of very few outliers, not 

exceeding 5% for any soil property. Following that, the soil properties were transformed into unitless 

scores ranging from 0 (poor performance) to 1 (excellent performance). For each of the selected MDS 

indicators for the study scheme, one of three non-linear polynomial scoring functions were selected (Eq. 

1–3), for value standardization and comparability (Masto et al., 2007): 

     𝑆𝑖𝑚𝑜𝑟𝑒 =  
1

1 + 𝑒−𝑏(𝑥−𝑎)
 (1) 

𝑆𝑖𝑙𝑒𝑠𝑠 =  
1

1 + 𝑒𝑏(𝑥−𝑎)
 (2) 

          𝑆𝑖𝑜𝑝𝑡𝑖𝑚𝑢𝑚 =  1 × 𝑒
−(𝑥−𝑎)2

𝑏  
 

(3) 

where x is the initial soil indicator value, a is the least square deviation from the mean, and b is the SD's 

slope of the mean (2σ2). “More is better” assigns higher scores to properties with high raw values, notably 

AWC, SOM, and NO3¯, for their severe shortage and soil biotic activity propagation. The “Less is better” 

transformation designates lower concentrations of potentially soil-degrading materials, including EC, Cl, 

Na, and Ca + Mg, linked to soil salinization processes. The designation of “Optimum” grants higher 

ranks to observations surrounding the indicator's mean value, incorporating pH, SAR, P, and K, which 

promote moderate soil acidity and the distribution of soil nutrients (Idowu et al., 2009; Moebius-Clune, 

2017). The indicators' adjustment is essential in giving greater significance to prevailing soil processes 

that strongly affect soil quality than their natural references (Andrews et al., 2004). For this reason, the 

scoring calculation of soil samples from the agricultural, RHS, and grazing LUs was derived from their 

nearby natural LU samples by sharing their mean and SD values in the process of the SQI calculation 

(Masto et al., 2008). 

 The scored soil indicators were integrated to calculate the ultimate SQI. First, to prevent high 

collinearity and redundancy in the SQI model, the power predictive score (PPS) was applied for the 

multiple pairwise correlations amongst all 12 scored soil properties (Wetschoreck et al., 2020). The 
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measured relationships were locally normalized and assigned with a predictive score ranging from 0–1. 

The normalized PPS value expresses the power of their correlation, not only for linear and non-linear 

patterns in the data but also for the correlation's asymmetry and directionality (i.e., X~Y ≠ Y~X). 

Strongly correlated indicators (PPS ≥ 0.5) were excluded from further SQI development. Afterward, a 

principal component analysis (PCA) for statistical calculation of significantly different uncorrelated 

dimensions (variables) was performed (Jolliffe et al., 2016). The whole variance of the model was divided 

into several low-covariable principal components (PCs; Hotelling, 1933), where the number of PCs with 

eigenvalues (i.e., weighted proportion of variance) is greater than one and accounting for at least 5% of 

the cumulative variance was examined. The scored soil indicators and their respective allocated 

statistically distinct weighted PCs were multiplied and summed into the eventual feature-scaled (0-1) 

SQI score for each soil sample (Eq. 4): 

𝑆𝑄𝐼 =  ∑ 𝑃𝑊𝑖 × 𝑆𝑖′
𝑛

𝑖=1
 (4) 

where PWi is the assigned PC weight, and Si’ is the scored soil indicator. The resultant SQIs create a 

simplified method for comparing and assessing the intensity of the disturbance to the soil samples relative 

to their natural references. The workflow of the PPS method was imported into R from Python (Zavarella, 

2020), using the "reticulate" package (Ushey et al., 2020), and the PCA was performed using JMP® Pro-

software version 15.0.0 (SAS Institute Inc., Cary, NC, USA). 

2.4 Step 2: Airborne hyperspectral image acquisition and processing 

2.4.1 Hyperspectral image acquiring 

The following step included applying soil indicators and SQI predictions to a more considerable 

regional extent. The confirmed results of the previous study were based on point-scale spectroscopy 

under a controlled laboratory protocol that served as reference ground-truth measurements. In this study, 

we applied IS as a suitable approach to predict the soil attributes and quality assessment on the regional 

scale. Accordingly, a flight campaign using an airborne hyperspectral imager obtained a three-striped 

image, taken under good weather and clear sky conditions over the Avdat study area on April 7, 2017. 

The AisaFENIX 1K sensor (Specim, Spectral Imaging Ltd.) was used in the flight campaign to capture 

the hyperspectral image of the study area. The soil sampling collection was conducted in parallel to the 

flight campaign. The AisaFENIX scanner holds a single optic aperture mounted onto a light aircraft. The 

sensor contains 420 contiguous spectral bands across the VIS-NIR-SWIR spectral region, which provides 

a spectral resolution of 3.5 nm in the VIS-NIR bands (380–970 nm) and 12 nm for the SWIR bands (970–

2500 nm) and a full width at half maximum (FWHM) of 3.5–6.5 nm. The sensor was carried at an altitude 
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of 660 m aboveground, which provided an eventual spatial resolution of 1 m per pixel. The ongoing 

geographical positioning of the aircraft was recorded using an inertial measurement unit (IMU) for 

further geometric rectification (Brook and Ben-Dor, 2015). 

Yet, image-based field measurements are susceptible to signal mixing and interferences caused by 

various factors, such as angular illumination, surface roughness, atmospheric light scattering, water vapor 

absorption, topographic orientation, vegetation and stone cover, and sensor radiometric and spectral 

instability performance (Brook and Ben-Dor, 2015). Hence, the acquired images had to undergo a series 

of pre-processing and calibration procedures for further analysis to achieve near-laboratory quality 

reflectance information (Ben-Dor et al., 2009). Using the airborne imagery-induced ATCOR-4 software 

(ReSe Applications LLC), the radiometric, atmospheric, and topographic corrections were performed 

based on the MODTRAN radiative transfer model®. The atmospheric correction was calibrated with 

ground targets measured by a portable analytical spectral device (ASD), the FieldSpec Pro® 

spectrometer, as described by Brook and Ben-Dor (2015). Additionally, the BRDF effect correction 

(BREFCOR) was implemented to minimize the BRDF effects caused by various surface covers 

(Schläpfer et al., 2015), resulting in a color-balanced calculated surface reflectance value for the three 

stripes. In addition, a transformation to the Israeli Grid 05/12 (EPSG:6991) projection was applied, the 

same correspondent projection for all spatial datasets throughout the research. This was followed by 

manual georectification to a high-resolution reference orthophoto of the study area (taken in November 

2015) for improved positional accuracy. Lastly, the three stripes were unified into one combined image 

using ENVI software's seamless mosaic workflow, where the geo-rectified hyperspectral image was 

precisely co-registered with the locations of the soil samples with a total error of less than 1 m (RMSE = 

0.648). 

2.4.2 Non-soil pixel exclusion and spectral enrichment 

To easily mask out non-soil pixels, the image was first spectrally resampled to Landsat 8 resolution 

to simplify the image classification in terms of better contrast and spectral separability coherence among 

the various land-cover features. The spectral resampling was performed by calculating the normalized 

difference vegetation index (NDVI; Tucker, 1979). The index was calculated using the sensor's NIR and 

red center wavelengths (864.67 nm and 654.59 nm, respectively; Barsi et al., 2014) for removing pixels 

of vegetation, built-up areas, and rocks exceeding a 0.05 < NDVI < 0.25 range value. Although vegetation 

indices values are universal, the exact limit of certain classes is subjected to vegetation types, local 

reflectance intensity, vegetation cover, and density, etc. Therefore, this study's threshold was found best 

to distinguish vegetation pixels from other land-cover types and was decided following a trial and error 
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process. Following this, a land-use land-cover (LULC) classification was performed to define the main 

land-cover features identified in the area. A supervised minimum distance classification (Wacker and 

Landgrebe, 1972) was conducted to remove very bright soils related to undeveloped and unconsolidated 

chalk and marl soils and additional non-soil land-cover categories. The subsequent masked image outline 

was used to clip the final shape of the original full spectral resolution image. 

Furthermore, bands within the spectral range of susceptibility to atmospheric vapor absorption 

(1350–1490 and 1830–2100 nm) and noisy bands on the spectra fringes (380–439 nm) were excluded 

from the dataset, resulting in 336 spectral bands in total. Spectral signatures from the adjacent pixels 

surrounding the initial soil sample locations were extracted (3\times3 neighborhoods), enlarging the 

model's entry to a total of 1,026 points for a development of a pixel-based model. The pixel selection 

process enabled us to enrich the dataset, reduce spectral heterogeneity, and improve the model's 

confidence due to varied land surface features and LUs. Each newly added spectral signature was 

assigned to the corresponding soil laboratory measurement values within its neighboring pixels by 

incorporating the laboratory and spectral data. The SVM-regression prediction maps were generated for 

the individual soil indicators and the integrated SQI. 

2.5 Step 3: IS approach integration of the laboratory data 

2.5.1 Discriminant analysis classification of spectra by land-use 

Before integrating the spectral and the chemical laboratory soil survey datasets through a 

regression process, a classification analysis for the enriched image-extracted hyperspectral data of the 

four studied land-uses was performed. The spectral differentiation between the land-uses is a primary 

indication of the applicability of spectroscopy as a suitable assessment tool for further SQI and other 

individual soil properties regression and prediction. The spectral classification was performed using a 

partial least squares-discriminant analysis (PLS-DA) method. The PLS-DA is a multivariate linear 

method that quantifies and categorizes the continuous predictor variable (spectra – X) into different 

classes of the discrete variable (land-uses – Y). The  model creates a hyperspace dimension that splits 

into statistically distinct components called latent variables (LV). Each LV represents a portion of the 

total cumulative variance of the observations relating to their respective class membership, which results 

in a well-defined classification of the multivariate feature hyperspace (Singh et al., 2005). The output of 

the PLS-DA provides a scatterplot that conveniently graphically illustrates the separability of the 

observed data according to its predetermined classes, in addition to a statistical evaluation of significant 

differences between classes. Similar to other classification methods, the performance of the PLS-DA 

model is also evaluated using overall accuracy (OA) and Kappa coefficient (Kc) metrics. In addition, the 
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PLS-DA also produces comparative variable importance in projection (VIP; Cécillon et al., 2008) 

analysis to rate the relative significance of each wavelength for the four LUs to detect the most prevalent 

spectral features in the model. The PLS-DA classification and graphical illustration was performed with 

MATLAB® PLS_Toolbox (Eigenvector, Wenatchee, Washington, USA; Wise et al., 2006). 

2.5.2 Soil chemical properties and SQI regression to hyperspectral image 

Once the spectral classification of the model is defined, the model regression can be applied. In this 

study, the regression models between the collected spectral signatures from the image itself (i.e., pixels) 

and the measured soil indicators at its location were used to generate the prediction maps using IS. The 

spectral data extracted from the image consisted of 336 spectral bands with high spectral contiguity that 

interacted differently with each soil indicator. Some of the soil properties, notably NO3, EC, SAR, P, and 

K, had highly skewed distributions of their raw values. Hence, these properties were transformed using 

a log10 for skewness reduction, achieving an acceptable normalized skewness value (γ < ±1) for the 

different indicators.  

Various regression models have been proven satisfactory for spectral prediction of soil properties, 

with many attempts to minimize the squared error of the predicted values. In addition, soft-margins 

support vector machine-regression (SVM-R) also tries to reduce the error and conceal the values within 

a certain threshold around the model's hyperplane (i.e., the model's trend line; Drucker et al., 1997). The 

controlled amount of slack given to specific regression errors allows better flexibility to optimize the 

different model parameters for such relatively noisy data (Thissen et al., 2004). The resulting restrained 

hyperplane and boundary lines can produce an optimal trendline to fit the predicted values with 

minimized absolute error within the model's margins and constraints (Eq. 5-6). Optimizing the model's 

fit included two adjustment hyperparameters that were embedded in its calculation, including epsilon (ϵ), 

which demarcates the margins’ width, and cost (C), which regularizes the accepted tolerance for 

predicted observations outside of ϵ: 

     𝑀𝐼𝑁
1

2
||𝑤||

2
+ 𝐶 ∑|𝜉𝑖, 𝜉𝑖

∗|

𝑛

𝑖=1

 (5) 

|𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤ ϵ + |𝜉𝑖 , 𝜉𝑖
∗| (6) 

where ||w||2 is the minimized total squared error, |ξi, ξi
*| is the original and reprojected absolute deviation 

from the margin ϵ while subjected to ξi, ξi
* ≥ 0, yᵢ is the target, wᵢ is the error coefficient, and xᵢ is the 

predictor value (Drucker et al., 1997). The SVM-R can be applied in a linear form or in higher-
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dimensional features that use different kernel functions to transform the non-linear dimension of the input 

space data into linearly separable feature space predicted observations using the "kernel trick" 

(Vanschoenwinkel and Manderick, 2005). In the current study, the non-linear Gaussian radial basis 

function (RBF) kernel method was applied (Eq. 7), with an additional hyperparameter gamma (γ) that 

defines the influence rate of the training dataset in terms of distance: 

𝐾(𝑥, 𝑥′) = exp(−𝛾‖𝑥 − 𝑥′‖2) (7) 

where K is the reprojected kernel location for points x and x', while ‖x-x'‖2 represents the squared 

Euclidean distance between the two observations (Thissen et al., 2004).  

 For the model design, the enriched dataset was randomly split into calibration (Cal) and validation 

(Val) subsets using cross-validation sampling at a 70 to 30 split ratio, respectively (Mourad et al., 2005). 

However, to better evaluate the robustness of the predicted models and measure their accuracy, an 

independent validation dataset is needed for subsequent comparison against the final soil properties and 

SQI prediction maps (Shi et al., 2020). For this purpose, 20% of the 114 raw data points of the individual 

soil indicators and the calculated SQI (i.e., prior to the dataset spectral enrichment) were set apart, 

including 23 prediction verification points (Pred). The remaining 80%, including 91 raw observations 

for each measured soil indicator, was used for cross-validation sampling of Cal/Val models at a 70 to 30 

split ratio. The number of initial observations slightly changed for the soil properties that had outliers 

removed from their raw data, referring to the abovementioned MAD outlier removal. These were then 

enriched to 819 points for further prediction by selecting the nine neighboring pixels from the geo-

location of the soil samplings. In achieving the optimized SVM-R model parameters, a minimal amount 

of outliers were excluded from the enriched dataset during the regression process based on the 

interquartile rule (±1.5*IQR; Iglewicz, 2011). The outlier removal did not exceed a 10% threshold for 

any of the enriched Cal/Val subsets, where for most indicators, only a few extreme points were excluded. 

Each soil attribute was statistically evaluated using the adjusted coefficient of determination for both 

the calibration and validation datasets (R2
adjCal and R2

adjVal), as well as for the regression's F-statistic 

value and degrees of freedom (F(df)Cal and F(df)Val). The selection of the R2 assumes that every single 

variable explains the variation in the dependent variable. The adjusted R2 tells the percentage of variation 

explained by only the independent variables that affect the dependent variable, hence, even more, 

accurate in model performance (Miles, 2005). The root means square errors (RMSECal and RMSEVal) 

were calculated as well. The ratio of performance to deviation (RPD), which equates the total variations 

of the measured indicators with those of the validation data in a standardized scale, was calculated as 

RPD = SD/RMSEVal for each soil attribute and the SQI (Chang et al., 2001). Despite being widely used 
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as a model performance evaluation metric in soil spectroscopy, the RPD assumes a normal distribution 

of the examined indicators. In contrast, in many cases, they are prone to a significant degree of skewness. 

Therefore, a suitable evaluation means was using the IQR of the measured indicators' ratio performance 

(RPIQVal = IQR/ RMSEVal) alongside the RPD values for a more comprehensive review of the model's 

accuracy (Bellon-Maurel et al., 2010).  

The significance of the validation models was ranked as: “excellent” at RPIQ ≥ 3.5,  RPD ≥ 2.5, and 

R2 ≥ 0.80; “good” at 3 ≤ RPIQ < 3.5, 2 ≤ RPD < 2.5, and R2 ≥ 0.70; “moderate” at 2 ≤ RPIQ < 3, 1.5 ≤ 

RPD < 2, and R2 ≥ 0.60; and “poor” at RPIQ < 2, RPD ≤ 1.5, and R2 < 0.60 (Chang et al., 2001; Veum 

et al., 2015). However, the RPIQ, RPD, and R2 values are correlated with one another. Hence, using them 

as reliable indicators must be accompanied by minimizing the disparity between the error values of both 

calibration and validation datasets, represented by their respective RMSE, to compare the prediction 

intervals of the models (Mcbratney and Minasny, 2016). Furthermore, the enrichment of the dataset 

allocates repeated measurements of the soil indicators to newly extracted spectra from the image. Thus, 

this might cause potential pseudo-replications in the dataset that artificially increase the total agreement 

(i.e., R2 values; Wang et al., 2000) and, subsequently, the performance metrics (i.e., RPIQVal and RPDVal), 

to a greater degree than would have resulted from a single-pixel extraction estimation. Therefore, the 

calibration and validation datasets’ error sizes (RMSECal and RMSEVal) were considered more reliable 

metrics for the success of the prediction model (Mcbratney and Minasny, 2016), where the appropriate 

difference was set to 25% between the two. Lastly, a VIP analysis was performed to detect and accentuate 

spectral features in the SVM-R model. The VIP bands of the SVM-R are compared to those of the PLS-

DA to examine their relative correspondence as an additional means of model success evaluation.  

2.5.3 Predicting models to the hyperspectral image 

The regression models were further used to produce the image-based prediction maps. As the non-

linear RBF kernel transformed the SVM-R model into a simple two-dimensional linear system, the 

upscaling of the retransformed regression models was employed in a linear method over the hyper-

layered image (Eq. 8):    

𝑦 = 𝐵 + 𝐴1𝑋1 + 𝐴2𝑋2 + 𝐴3𝑋3 + ⋯ + 𝐴𝑛𝑋𝑛 (8) 

where y is the additive predicted soil property (pixel) value, A is the calculated model weighting 

coefficient for each AisaFENIX waveband X, and B is the model’s slope (Lugassi et al., 2017). The 

output of the transformation assigns each pixel in the image to its respective predicted value, generating 

regression-based continuous prediction maps of the study area. The adjusted R2 and RMSE values 
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(R2
adjPred and RMSEPred, respectively) were calculated to examine the relationship between the excluded 

independent dataset of the measured soil properties and the SQI and their corresponding pixels’ locations 

on the map within their respective neighborhoods. Indicators with an agreement of R2
adjPred ≥ 0.7 were 

considered successfully predicted. The SVM-regression and prediction, including parameter grid-search 

tuning optimization and upscaling, were performed in RStudio with the "e1071" (Meyer et al., 2019) and 

"caret" (Kuhn, 2020) packages. 

2.6 Statistical analysis 

Significant differences between LUs for the calculated overall SQI scores were tested using a one-

way analysis of variance (ANOVA) test. For the SQI's physical, biological, and chemical attributes, the 

non-parametric Kruskal-Wallis test was used, as some of the ANOVA's assumptions for normal 

distribution of the model's residuals and homoscedasticity of the data were unmet. The significance level 

for the different LU classes of the overall SQI F-statistic and the subgroups' chi-squared (χ2) test was 

determined at α < 0.05.   

3 Results 

3.1 Soil quality index (SQI) development 

The descriptive statistics for the individual soil indicators’ laboratory analyses and their scoring 

transformation were performed in the previous study and can be found in Levi et al. (2020). The 

predictive power score (PPS) correlation matrix for the soil properties (Fig. 3) revealed strong 

correlations between the various salinity indicators and EC, notably Cl (PPS(Cl → EC) = 0.82), Na (PPS(Na 

→ EC) = 0.73), and Ca + Mg (PPS(Ca + Mg → EC) = 0.71), and between themselves. The EC was left as the 

only representative salinity indicator to rule out possible collinearity and redundancy in the SQI model. 

The soil texture properties (i.e., fractional sand, silt, and clay) were based on mineral particle size 

fragmentation (Schindelbeck et al., 2008). These properties were mostly descriptive parameters and 

constant in values. Hence, soil texture was excluded (Karlen et al., 2003), leaving the SQI model with 8 

out of 12 indicators. A significant correlation was also found between NO3 and EC (PPS(NO3 → EC) = 0.46) 

and the salinity indicators, but eventually, the NO3 remained in the SQI analysis. 



 

68 
 

 

Figure 3: Predictive power score (PPS) correlation matrix for all the measured soil properties. The colored frames 

represent the associated physical, biological, and chemical components of the soil indicators. Pairs of soil 

indicators with high correlations (PPS ≥ 0.5) were excluded from further SQI calculation. SQI: soil quality index, 

AWC: available water content, EC: electrical conductivity, Cl: chlorine, Na: sodium, Ca + Mg: calcium and 

magnesium, SAR: sodium adsorption ratio, P: phosphorus, K: potassium, NO3: nitrate, and SOM: soil organic 

matter. 

The integrated SQI for all soil samples was generated among the LU practices using the physical, 

biological, and chemical scored soil properties. The results of the PCA suggest that three PCs, with an 

eigenvalue greater than one and accounting for more than 10% of the proportion of variance, explained 

72.55% of the model's variance (Table 2). PC1 held the most explanatory variance with 40.39% and 

included the SAR, NO3¯, P, K, and SOM scored indicators, followed by PC2 with 19.58% of the variation 

for AWC and EC scores, and PC3 with a loading value of 12.57% for the remaining pH scoring. A PCA 

bi-plot of the scored soil properties on PC1 versus PC2 is shown in Appendix A. Figure 4 displays the 

mean overall SQI scores and their corresponding physical, biological, and chemical attributes among the 

four LUs. The mean overall score of all soils combined was SQI = 0.613, whereas the scores for the 

agriculture, grazing, RHS, and natural LUs were SQI = 0.661, 0.598, 0.566, and 0.605, respectively. 

Significant differences were found between some of the LUs (F(3) = 3.59, p < 0.05), where agriculture 

was significantly higher than grazing (p = 0.049) and RHS (p = 0.02). Additionally, some significant 

differences emerged when observing the particular components. The biological soil properties showed 

the most notable significant differences (χ2
(3) = 23.96, p < 0.05), where the natural areas presented 

significantly lower mean rates (SQI = 0.144) than those of the other three LUs (SQI = 0.230, 0.231, and 
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0.165 for agriculture, grazing, and RHS, respectively). On the other hand, the scores’ proportion of the 

chemical attributes (χ2
(3) = 12.15, p < 0.05) was significantly higher in the natural LU (SQI = 0.421) than 

in the grazing and RHS (SQI = 0.327 and 0.368, respectively). The physical subpart showed no 

significant differences among all four LUs (χ2
(3) = 4.58, p = 0.21). 

Table 3: Principal component analysis (PCA) results for the scored soil indicators. The highest loading factor 

within each principal component (PC) for every indicator is marked bold. 
 PC1 PC2 PC3 

Eigenvalue 3.23 1.57 1.01 

Proportion of variance (%) 40.39 19.58 12.58 

Cumulative proportion (%) 40.39 59.98 72.55 

No. of properties 5 2 1 

AWC Score 0.16 0.64 0.06 

NO3¯ Score 0.85 -0.39 0.20 

SOM Score -0.72 -0.47 0.08 

pH Score -0.19 0.21 0.86 

EC Score -0.61 0.66 -0.21 

SAR Score -0.67 -0.55 -0.06 

P Score -0.72 -0.47 0.08 

K Score 0.92 -0.04 0.08 

AWC: available water content, NO3¯: nitrate, SOM: soil organic matter, EC: electrical conductivity, SAR: sodium adsorption 

ratio, P: phosphorus, and K: potassium. 

 
Figure 4: Mean overall soil quality index (SQI) scores and their respective physical, biological, and chemical 

indicators’ subgroups for the four land-uses (agriculture, grazing, RHS, and natural) in the Avdat study area. 

Uppercase letters above the error bars indicate significant differences between the land-uses of the overall scores. 

In contrast, lowercase letters within the bars denote the differences between the particular attributes (p < 0.05). 

RHS: runoff-harvesting system. 
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3.2 Hyperspectral image pre-processing 

The pre-processing of the hyperspectral image included multiple steps, readying it for further analysis 

and prediction. Figure 5 shows the results for the NDVI (Fig. 5A) and the LULC classification map (Fig. 

5B) for non-soil pixel exclusion. High NDVI values (≥ 0.25) indicate vegetation presence, while low and 

negative values (≤ 0.05) imply the existence of other non-soil materials, such as rocks, paved roads, and 

buildings. The land-cover classification for removing additional pixels, including classes of very bright 

undeveloped chalky soils and built-up areas, resulted in high overall accuracy (OA = 95.11%) and Kappa 

coefficient (Kc = 0.93) values. The confusion matrix of the minimum distance classification is shown in 

Appendix 2. The largest 'soil' class that represents the most predominant loess soil in the region accounted 

for 68.13% of the entire area (16.03 km2), with 'dark soil' and 'bright soil' classes falling behind (17.11% 

and 12.63%, respectively). The 'very bright soil' and 'road/built-up' categories cover about 1% of the 

image each (0.25 km2). The classification output raised the issue of the BRDF effect’s remnants on the 

image fringes, as the dark soil class suffered from a significantly lower producer's accuracy rate (78.57%; 

Appendix B) compared to the rest of the land-cover classes. The western edge of the image was 

exceedingly attributed to dark soils and very bright soil on the eastern part, while the rest of the image 

was highly accurate (Fig. 5B), which indicates the effects caused by sun angle directional illumination. 

Thus, the most extreme interrupted margins of the image were clipped and removed to reduce possible 

error and prevent further misinterpretation of the results (Fig. 5C). By excluding the NDVI, the LULC 

classification, and the image fringes, a total of 11.36% of the pixels were removed from the image. Once 

the pre-processing treatments were completed, the corrected and calibrated spectra were extracted from 

the hyperspectral image. The mean image-extracted spectral signatures of the soil samples for the 

different LUs are shown in Figure 6. 
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Figure 5: (A) Normalized difference vegetation index (NDVI); (B) land-use land-cover (LULC) classification 

map; and (C) final clipped AisaFENIX bare soil image for the Avdat region. 

3.3 Spectral classification and correlation of SQI and soil indicators 

The scatterplot and results of the PLS-DA classification of the image-extracted spectra according to their 

respective LUs are given in Figures 6-8. The performed discriminant analysis (Fig. 7) model consists of 

3 LVs accounting for 68.25% of the cumulative variance, also exhibiting strong separability among the 

four LUs (OA = 95.31%, Kc = 0.90). The results indicate a successful classification model that is 

compatible with further regression and prediction. The variable importance in projection (VIP) analysis 

was derived from the PLS-DA classification, highlighting unique spectral features (i.e., wavelengths) for 

each of the examined LUs (Fig 7). Some significant spectral features were noticed across all LU practices, 

including 520.69, 792.21, 1537.43, and 2278.13 nm. Others were shared among several LUs, such as 

2204.65 nm for agriculture, RHS, and natural, 609.69 and 2441.33 nm for agriculture and grazing, 681.91 
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and 2405.36 nm for agriculture and RHS, and 2357.12 nm for grazing and natural. 

  

Figure 6: Mean soil spectral signatures of the four land-use practices (agriculture, grazing, RHS, and natural) 

extracted from the AisaFENIX hyperspectral image for the Avdat study area. RHS: runoff harvesting system. 

 
Figure 7: Partial least squares-discriminant analysis (PLS-DA) classification for the four land-use practices (agriculture, 

grazing, RHS, and natural) extracted spectra from the AisaFENIX hyperspectral image of the Avdat study area. The figure 

includes the model's number of latent variables (LV) and the overall accuracy (OA) and Kappa coefficient (Kc) statistics. 

Colored circles indicate a 95% confidence level. RHS: runoff harvesting system. 
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Figure 8: Variable importance in projection (VIP) plot of the agriculture (green), grazing (orange), runoff-harvesting system 

(RHS; purple), and natural (blue) land-uses in the Avdat region. Each bar represents the importance score of a particular 

hyperspectral image waveband in the partial least squares-discriminant analysis (PLS-DA) spectral classification analysis. 

The red sections highlight regions with spectral features with significant VIP peaks. 

The full results of the SVM-R analysis are presented in Table 3, including the adjusted R2, RMSE, 

RPIQ, RPD, F-statistic values, and their significant VIP wavebands for the calibration and validation 

split datasets. Also, the regression scatterplots for all soil properties are shown in Figure 9. All the 

predicted soil indicators and the overall SQI were found significant for image-scale prediction (RPIQVal 

≥ 3, RPDVal ≥ 2, and R2
adjVal ≥ 0.70), except AWC, which presented borderline results (R2

adjVal = 0.776, 

RPIQVal = 2.67, RPDVal = 2.00). The overall SQI regression model resulted in an “excellent” degree of 

validation (R2
adjVal = 0.867, RPIQVal = 4.09, RPDVal = 2.60, RMSECal = 0.03, and RMSEVal = 0.03). The 

log-transformed EC (R2
adjVal = 0.837, RPIQVal = 4.21, RPDVal = 2.47, RMSECal = 0.21, and RMSEVal = 

0.25) and P (R2
adjVal = 0.861, RPIQVal = 4.12, RPDVal = 3.19, RMSECal = 0.10, and RMSEVal = 0.12) 

exhibited the strongest evaluation metrics of the successfully correlated indicators. The regression 

models of the fractional sand, NO3¯, SOM, pH, SAR, and K properties had an “excellent” performance 

as well. The 25% error ratio (i.e., RMSEVal/RMSECal) was compromised only by K at 28.12%. 

Figure 10 presents the inclusive variable importance for distinguishing subtle spectral response 

differences among all soil indicators. A higher VIP score for a particular wavelength implies the existence 

of a significant spectral feature, where accentuated peaks were noticed across different spectral ranges 

for the soil indicators. Despite the extracted spectra being subjected to noticeable signal disturbances 

(Fig. 6), recognizable differences between the mean LUs’ spectra indicate the soil materials' content 

variations. The general reflectance is relatively high, referring to the predominant quartz-rich sandy-loam 

soil texture class, including disparities of specific spectral features. The VIS-NIR range (400–1100 nm) 

presented some notable VIP attributes: the 680–740 nm range, known for organic matter content, has 

shared importance for SOM, pH, EC, SAR, and P, and the 870–905 nm is significant for AWC, silt, clay, 

NO3¯, and P. However, the SWIR region (1100–2500 nm) showed the most prominent spectral features. 

The soil moisture absorptions at the 1493.44 nm waveband strongly peaked for AWC, sand, NO3¯, SOM, 

EC, P, and K, and at 1593.95 nm for AWC, silt, NO3¯, pH, and EC, as well as at 2100–2180 nm for 

AWC, silt, clay, SOM, pH, EC, and K. This was even more so the case for the organic compounds, clay 

minerals, and carbonates' various absorption attributes across the 2200–2450 nm for almost all soil 

properties. The spectral regions identified for the SQI model coincide with those of its indicator 

counterparts, including the 520.69, 678.46, 1593.95, 1763.26, 2223.06, and 2399.35-2435.35 nm 

wavebands. Most of the regression VIP bands were relatively similar to the spectral regions found by the 

VIP bands derived from the PLS-DA classification. 
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3.4 Soil indicators and SQI prediction maps 

The final prediction maps for the overall SQI and the individual soil indicators are presented in 

Figures 11 and 12, respectively, and their statistical evaluation is given in Table 3 and Fig. 9. For the 

predicted properties, 8 out of 12 soil indicators were successfully mapped (R2
Pred

 ≥ 0.7), including the 

SQI, fractional sand and clay, SOM, pH, EC, SAR, and P. The map of the overall SQI (Fig. 11A) 

provided a significant prediction agreement with the excluded verification dataset (R2
adjPred = 0.779, 

RMSEPred = 0.03), distinguishing well the continuous SQI score patterns in accordance with the different 

LU practices (Fig. 11B), land-cover features (Fig. 11C), and topography (Fig. 11D). 

The successfully upscaled prediction maps of the individual soil indicators (Fig. 12) show that 

fractional sand and EC had the strongest agreement values (R2
Pred = 0.853, RMSEPred = 0.05 and R2

Pred = 

0.84, RMSEPred = 0.32, respectively), whereas fractional clay and SOM had the most marginal ones 

(R2
Pred = 0.706, RMSEPred = 0.02 and R2

Pred = 0.722, RMSEPred = 0.43, respectively). When observing 

the different properties’ maps separately, varying patterns emerge. For example, contradictory trends are 

observed between the sand and clay maps (Fig. 12A and 10B, respectively), where higher sand 

concentrations correspond with lower clay fractions. Greater predicted SOM (Fig. 12C) and P (Fig. 12F) 

contents were observed within and around the interrupted human LU soils and the Zin streambed. A 

similar trend occurred for pH (Fig. 12D) and EC (Fig. 12E), where both were also affected by the 

landscape's topographical features. The unsuccessfully predicted properties, including AWC, fractional 

silt, NO3¯, and K, all presented poor correlations and large error sizes, and are thus unreliable for soil 

mapping in this case. 
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Table 4: Support vector machine-regression (SVM-R) analysis and image upscaling of prediction results of Avdat region. For each of the soil properties 

in the model, the number of support vectors (SVs), the adjusted coefficient of determination for the calibration and validation datasets (R2
adjCal and R2

adjVal), 

as well as for the F-statistic value and degrees of freedom (F(df)Cal and F(df)Val), and the root mean square error (RMSECal and RMSEVal) were assigned. 

The ratio of performance to deviation (RPDVal) and the interquartile range (RPIQVal) for the validation set was also calculated. Properties with significant 

prediction values (RPIQVal ≥ 3, RPDVal ≥ 2, and R2
adjVal ≥ 0.7) were examined for variable importance in projection (VIP) wavebands, upscaled to the 

image extent, and were assigned R2 and RMSE (R2
Pred and RMSEPred). Model constraints and optimization parameters’ cost (C), epsilon (ϵ), and gamma (γ) 

are noted. 

Soil 

properties 
R2

adjCal R2
adjVal RPIQVal RPDVal SVs C ϵ γ F(df)Cal F(df)Val RMSECal RMSEVal VIP bands (nm) R2

adjPred RMSEPred 

AWC (%) 0.844 0.776 2.671 2.005 245 275 3.2 6 3108 )1,552( 844.1 )1,222( 3.005 3.673 
881.78, 1493.44, 1593.95, 1731.94, 

2099.81 2351.07 
0.417 4.127 

Fractional 

Sand  
0.913 0.817 3.681 2.528 198 200 0.045 1.3 5946(1, 568) 1017(1,235) 0.035 0.044 

999.77, 1493.44, 1537.43, 1769.52, 

2265.92, 2351.07, 2405.36 
0.854 0.047 

Fractional 

Silt 
0.901 0.810 3.491 2.218 214 300 0.04 1 5094(1, 563) 1018(1,237) 0.032 0.045 

881.78, 1537.43, 1593.95, 2180.05, 

2417.37, 2471.15 
0.494 0.061 

Fractional 

Clay 
0.903 0.785 3.245 2.313 205 200 0.019 0.4 5210(1, 561) 861(1,234) 0.017 0.022 

871.45, 1285.57, 2124.54, 2223.06, 

2357.12, 2417.37 
0.707 0.024 

NO3¯ (log10) 0.924 0.875 4.545 2.685 248 340 0.16 1.1 6638(1, 547) 1548(1,220) 0.157 0.206 
898.97, 1493.44, 1593.95, 1706.87, 

1763.26, 2375.25, 2417.37 
0.520 0.422 

SOM (%) 0.925 0.848 3.718 2.625 220 150 0.42 3 6747(1, 544) 1218(1,217) 0.355 0.458 
681.91, 1493.44, 2124.54, 2357.12, 

2447.30 
0.723 0.434 

pH 0.923 0.851 4.043 2.569 258 125 0.12 3.2 6745(1, 563) 1277(1,223) 0.101 0.136 
493.43, 599.39, 681.91, 1018.96, 

1593.95, 2112.18, 2417.37 
0.733 0.136 

EC (log10) 0.899 0.837 4.213 2.473 220 250 0.25 2.2 4909(1, 550) 1174(1,227) 0.208 0.254 
688.88, 1025.35, 1493.44, 1537.43, 

1593.95, 2167.73 
0.843 0.319 

SAR (log10) 0.902 0.842 3.573 2.637 219 175 0.15 1.1 5166(1, 560) 1208(1,225) 0.136 0.158 
737.04, 1706.87, 2204.65, 2278.13, 

2453.27 
0.783 0.170 

P (log10) 0.944 0.862 4.119 3.191 245 275 0.11 1.5 9221(1, 542) 1378(1,220) 0.098 0.119 
602.83, 737.04, 905.85, 1203.38, 

1493.44, 2345.02, 2417.37 
0.733 0.101 

K (log10) 0.948 0.841 4.490 2.555 226 350 0.21 3.3 10220(1, 562) 1179(1,221) 0.166 0.231 
837.02, 1493.44, 2112.18, 2235.32, 

2411.37 
0.338 0.450 

Overall SQI 0.901 0.867 4.085 2.602 186 250 0.034 0.6 5118
(1, 560)

 1484
(1,226)

 0.028 0.032 

520.69, 678.46, 1317.13, 1593.95, 

1688.07, 1763.26, 2223.06, 2399.35-

2435.35 

0.779 0.036 

AWC: available water content, NO3¯: nitrate, SOM: soil organic matter, EC: electrical conductivity, SAR: sodium adsorption ratio, P: phosphorus, K: potassium, and SQI: 

soil quality index.
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Figure 9: Support vector machine-regression (SVM-R) scatterplots and main results for the correlated soil properties and the 

overall soil quality index (SQI), between the measured calibration (Cal) and the validation (Val) datasets, and also the results 

of the upscaled image prediction maps (Pred). RMSE: root mean square error; RPIQ: ratio of performance to interquartile 

range; RPD: ratio of performance to deviation; AWC: available water content, NO3¯: nitrate, SOM: soil organic matter, EC: 

electrical conductivity, SAR: sodium adsorption ratio, P: phosphorus, and K: potassium.  
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Figure 

10:Variable importance in projection (VIP) plot of the physical (blue), biological (pink), and chemical (green) soil properties in the Avdat region. Each bar 

represents the importance score of a particular hyperspectral image waveband in the support vector machine regression (SVM-R) analysis. The red sections 

highlight spectral regions with significant VIP peaks. AWC: available water content, EC: electrical conductivity, Cl: chlorine, Na: sodium, Ca + Mg: 

calcium and magnesium, SAR: sodium adsorption ratio, NO3¯: nitrate, P: phosphorus, and SQI: soil quality index. 
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Figure 11: (A) Final upscaled prediction map for the overall soil quality index (SQI) over the Avdat region, 

affected by various LU features, including (B) grazing LU and highly eroded bright chalky soil around an 

unrecognized Bedouin village; (C) agricultural fields (on the left edge of the image), stone-wall terraces (on 

the right), and the Zin Stream (in the center); and (D) a liman runoff-harvesting system (RHS) and degraded 

soil in response to steep and barren topography. 
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Figure 12: Final upscaled prediction maps for the individual soil properties over the Avdat region: (A) 

fractional sand, (B) fractional silt, (C) soil organic matter (SOM), (D) electrical conductivity (EC), (E) 

phosphorous (P), and (F) sodium adsorption ratio (SAR). The colored frames represent the associated physical, 

biological, and chemical components of the soil indicators.  

4 Discussion 

The current study demonstrated the capability of airborne IS for continuous surface mapping of 

multiple soil properties and the integrated SQI over the entire study area. The soil properties and 
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overall quality were tested by combining conventional laboratory surveys and the contribution of the 

spectral dimension to the regression-based prediction capabilities of IS. The incorporation of the 

laboratory soil analyses of 12 physical, biological, and chemical indicators and the integrated overall 

SQI with the spectral data extracted from the hyperspectral image was successfully applied. The PLS-

DA classification confirmed the strong existing spectral separability among the four examined LUs. 

The successful classification results enable differentiating between the four LU types and their natural 

proximity in the arid environment of the Avdat region in the Negev Desert. The prediction of the SQI 

was found significant for both the local point-scale (R2
adjVal = 0.87, RPIQVal = 4.09, RPDVal = 2.60, 

RMSECal = 0.03, and RMSEVal = 0.03) and the large-scale regional mapping (R2
adjPred = 0.78, 

RMSEPred = 0.03). We found high prediction ability for seven soil indicators, including fractional 

sand and silt, SOM, pH, EC, SAR, and P. The developed regional extent mapping enabled the 

recognition and monitoring of the contiguous spatial variability of different soil processes in response 

to both human-made practices and environmental features as one. The results provided by the IS 

methodology affirm its substantial advantages, effectiveness, and reproducibility capabilities for 

comprehensive soil quality assessment, particularly in rough and challenging arid environments, as 

in our case study. 

4.1 Soil quality assessment 

The assessment of soil quality within an ecological scope requires the selection and adjustment 

of a particular set of soil indicators that will best depict the function of the soil under changing LUs 

and management practices (Bünemann et al., 2018). The SMAF protocol (Andrews et al., 2004) was 

most suitable for this objective by employing chemometrics analyses of 12 physical, biological, and 

chemical soil indicators. As described in the previous study (Levi et al., 2020), soil indicators were 

selected according to the investigated arid study area and LUs. Therefore, selecting adequate soil 

indicators and their amount is a great challenge, especially in a resource-limited dryland environment. 

For instance, plant and microbiome available water, soil organic matter, nutrients, and seed banks in 

the soil are critically limiting factors in this climate type (Saygin, 2018). Thus, the quantification of 

their presence is crucial for the soil quality evaluation due to their essential role as precursors of the 

soil’s ability to support the ecosystem's productivity and function (Lal, 2011). It is also necessary to 

trace soil salinization processes by measuring salinity indicators, such as EC, SAR, and other 

particularly saline elements (i.e., Cl, Na, and Ca + Mg). The loess-dominated aridisol soil order cannot 

be defined as highly alkaline in its natural state, but rather as a natric subgroup of typical soils (Singer, 

2007). However, the salinity levels have shown significant fluctuations in the different LUs practiced, 

particularly those involved with intensive cropping and herding. Soil texture is also an important 

property since, in most cases, it strongly dictates other mechanisms within the soil column. Some 
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notable processes include water and organic matter holding capacity, drainage, permeability, fertility 

(Weil and Brady, 2017), and the support of developing aggregates that improve the soil's resistance 

and stability, which mitigate its erosion and quality degradation (Eldridge et al., 2020; Levi et al., 

2021).   

The potential redundancy amid the selected soil indicators in the SQI model was reduced with the 

exclusion of the strongly correlated salinity properties (i.e., Cl, Na, and Ca + Mg) and the descriptive 

soil texture, the scoring transformations, and the PCA for a better interpretation of the 

interrelationships between the selected indicators. The preventive measures taken have confirmed 

that the incorporated soil indicators were, in fact, statistically distinct and explain most of the variation 

in the assessment model. The PCA results were used to assign the weights to the transformed scored 

indicators to develop the statistically integrated SQI for a numerical and quantifiable evaluation of 

the soil performance in response to the different LUs and land-cover features. The significant 

differences found for the calculated SQI (Fig. 4) suggest that the human LU practices significantly 

impact the natural surroundings for the overall estimation in both improvement and degradation. The 

strictly regulated agricultural fields had higher SQI scores than the grazing and RHS LUs, which are 

more affected by sporadic processes of livestock behavior and climatic conditions, respectively, with 

the natural LU placed in-between. Moreover, the significant differences observed between the LUs, 

mainly for the biological and chemical attributes, revealed a more explicit site-specific depiction of 

the ongoing soil processes. The biological soil properties were significantly less abundant in the RHS 

and natural land than in the managed agricultural and grazing practices. 

In contrast, the chemical indicators more strongly influenced the natural soils than the other three 

LUs. This is a direct outcome of the different agricultural, grazing, and RHS-related inputs, such as 

irrigation, catchment water, fertilizers, pesticides, organic matter, and livestock residues (Biagetti et 

al., 2021; Haynes and Naidu, 1998; Turner, 1998). These practices show that the agriculture LU is 

generally more affected by chemical properties related to cropping activity. At the same time, the 

grazing LU is more impacted by biological factors derived from livestock and herding activities. On 

the other hand, the RHS relies on the accumulation of transported natural resources from a severely 

resource-scarce environment, thus exhibiting significantly low biological properties values, similar 

to the natural environment. 

4.2 Spectral discriminant analysis classification by LU 

The described PLS-DA classification presents good visual and statistical spectral separability 

among the four different LU practices. The PLS-DA provides a quantitative approach to separate the 

cumulative probability of the soil spectral samples into statistically distinct classes, according to their 

respective LU. The strong classification results presented clear contrast  between the different 
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practices, with minor confounding among parts, like grazing mixing with RHS and natural LUs. This 

could be explained by the fact that these practices share properties that are related to the soil condition 

and its management. The VIP analysis contributes an additional aspect of the differences among the 

four practices. While all LUs show sensitivity for shared regions across the spectral range, the 

particular practices accentuate specific absorption features that imply more significant soil 

properties. The agriculture displays more significant peaks in the SWIR region (2200-2450 nm), 

related to organic compounds, clay minerals, and carbonates, in comparison to spectral attributes in 

the VIS-NIR region (520-850 nm) that are more significantly affected by soil organic matter, 

nutrients, and herding activity prevailing in intensive grazing soils (Ben-Dor et al., 2015). The RHS 

and natural LUs show a more mixed behavior, where the natural land is less affected by SOM and 

organic resources due to their scarcity compared to the RHS, but also exhibits more emphasized 

peaks related to clay minerals (1688.07 nm) and water absorption (1285.57 and 1537.43 nm) for the 

natural areas (Ben-Dor, 2011). 

4.3 Spectral correlations to soil indicators and the SQI  

The SVM-R correlations of the measured laboratory soil indicators (i.e., raw and log-transformed) 

with the enriched extracted spectra from the AisaFENIX image have achieved successful validation 

values for the SQI (RPIQVal ≥ 3, RPDVal ≥ 2, and R2
adjVal ≥ 0.70) and several soil properties (Fig. 9 

and Table 3). Some showed more robust performances than others, notably EC, pH, NO3¯, P, and K, 

representing variations of salinity levels and nutrient availability in the soil. The deviations in the 

mentioned indicators were firmly attributed to human interference originating from agriculture, 

grazing, and RHS activities and their effects on the SQI (Paz-kagan et al., 2016; Paz-Kagan et al., 

2017). The influence of SOM and AWC is strongly related to soil texture (sand, silt, and clay 

fractions). Larger fractions of the finer grain-sized clay particles and minerals generally improve their 

retention capacity within the soil system (Marques et al., 2019). As can be seen from the mean 

extracted spectra by LU in Figure 6, the interrupted LU curves are less reflective than the natural 

ones, indicating the more significant influence and absorption of different artificial effects on the soil. 

Managed land cultivation increases the inputs and accumulation of vital resources such as water, 

nutrients, sediments, and seeds. Their increasing abundance in the soil strengthens the absorption 

factor in the particular spectral regions linked to these soil materials and attenuates the general 

spectral signature curves of the human LUs compared to the natural ones (Demattê et al., 2007; Stoner 

and Baumgardner, 1981). 

The spectral inference indicates on strengthens of these relationships, where significant spectral 

features in the SQI regression VIP analysis were affiliated to particular chromophores (Fig. 10). The 

spectral features in the VIP were associated, regarding various molecular bonds, overtones, and 
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mineralogical structures, with the different soil attributes (Ben-Dor, 2011). For example, EC shows 

substantially important spectral features in the 1490–1590 and 2200 nm spectral regions, partially, 

with almost all soil indicators, including AWC, silt, clay, and SOM. These soil properties (i.e., AWC, 

silt, clay, and SOM) are well-known for their direct or indirect relations to hygroscopic water 

absorption (Ben Dor et al., 2015), hydroxyl functional O−H group minerals (Taylor, 2004), and 

carbonate C−O group minerals (Ben-Dor and Banin, 1995). These were mainly related to calcite and 

dolomite that loosely cement the sedimentary loess soil in this arid region (Shapiro, 2006). The 

topsoil's retention was also attributed to the soil texture and mineralogical structure and composition. 

Significant portions of phyllosilicate 2:1 clay and fine silt minerals (e.g., kaolinite and 

montmorillonite) generate greater pore area for improved water holding capacity and greater soil 

colloid surface for adsorption of organic matter, soil nutrients, and saline elements (Barré et al., 2008; 

Barton and Karathanasis, 2005). In turn, these elemental and molecular interactions regulate the 

exchange capacity of the mineral's electric charge that could potentially undermine the soil's 

aggregation stability, which eventually results in soil weathering and quality degradation (Conforti et 

al., 2013).  

Different soil properties were acknowledged for various spectral absorption features across the 

entire spectral range, most notably in the SWIR region (Demattê et al., 2007). Organic matter is 

known for its direct absorption across the VIS-NIR region around 550–1100 nm and peaking at 675 

nm, according to He et al. (2009). The SOM revealed a strong peak at 681.91 nm, along with other 

indicators, including EC, pH, SAR, and P. These soil indicators were related to colloid adsorption 

competitors that are accentuated by indirect features in the SWIR over 2300–2450 nm, where SOM 

moderates the salinity levels when retained in place of saline elements (Ding et al., 2020). Significant 

features were found within 520-600 nm that associates higher concentration of P with crop and plant 

residues as well as with some oxides in the soil (Morón and Cozzolino, 2007). The important peaks 

for K at 2112.18 and 2235.32 nm, which are more prevalent in human LUs than in natural ones, are 

linked to clay minerals and SOM that supply exchangeable cations (Demattê et al., 2017). The SQI 

regression model complies with other individual indicators' success, where significant spectral 

footprints affect the SQI importance analysis. These emphasized the most predominant features that 

imply the intercorrelation of the different soil properties (Paz-Kagan et al., 2015). They also 

correspond well with the acknowledged spectral features found for the PLS-DA classifications VIP 

analysis. However, it also seems that some unrelated VIP peaks were observed for some of the 

properties that could not be attributed to the known spectral absorption features of specific materials. 

The spectral enrichment is a possible reason for introducing particular non-elemental spectral features 

into the variable importance analysis. These features might originate from site-specific factors such 

as local topography, which might be responsible for some of the prediction models' inaccuracies. 
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4.4 Soil quality mapping 

The final step towards a comprehensive soil quality assessment is the regional prediction based 

on the acquired and processed airborne AisaFENIX hyperspectral image. Integrating the extensive 

soil quality assessment of the physical, biological, and chemical indicators with IS allows inferring 

the causes of spatial variations for the SQI and soil indicators (Paz-Kagan et al., 2015). The SQI map 

agreed with the independent soil samples and their corresponding extracted predicted values. It 

managed to distinguish various clusters of pixel values in the matter of different LUs and terrain 

features, such as livestock pens and intensive grazing (Fig. 11B), agricultural fields, stone-wall terrace 

effects, stream paths (Fig. 11C), hillslopes, a liman, and underdeveloped soils (Fig. 11D). The spatial 

divergence was found significant for the SQI and seven other soil properties. 

The general trend is that lower and flatter surfaces, like those around the ephemeral Zin Stream, 

with more developed soil systems, present higher SQI values than the more rugged and steep 

topography at the study area’s western and southern borders. The stream channel itself displayed 

relatively high SQI scores, with significantly higher rates in locations of deposited fine sediments, 

such as point and channel bars and stream banks along the meandering stream path (Hu et al., 2017). 

Along with the discharged deposits, the intensive flashflood events that characterize the region carry 

soil, organic matter, and mineral nutrients that enrich the soil, improving soil quality (Yang et al., 

2019). The RHSs located alongside the stream path showed different trends according to the type of 

water catchment system observed. The primary function of an RHS is to capture the water and 

sediment flow that would otherwise wash out of the watershed during runoff-generating rainfall 

events. The liman systems collect the runoff, sediments, and essential soil materials into small 

catchment areas. Studies have shown that limans generally exhibit better SQI score characteristics 

(Paz-Kagan et al., 2019, 2017). They act as sinks that prevent discharge back to the stream and 

significantly improve soil quality in small catchment areas (Paz-Kagan et al., 2017). The hydrological 

barriers of the stone-wall terraces reduce water conductivity and water leakage while increasing soil 

deposits and moisture on the watershed scale. A general decrease in SQI is detected as the stream 

attenuates northwards since the terraces effectively reduce the energy of the runoff flow. The 

upstream terraces dilute a significant amount of the transported soil, resulting in decreased SQI in the 

downstream watershed (Biagetti et al., 2021; Yizhaq et al., 2020). Studies of terraced riverbeds 

revealed their essential function in agricultural systems and the conservation of abandoned riverbeds 

to prevent soil erosion and fertility loss. Our research demonstrates that integrating human-designed 

water harvesting systems into nature is possible when knowledge on watershed ecology is available. 

This knowledge can produce a sustainable human-ecological management policy by enhancing 

services without modifying their inherent properties.  

 Within the other human-impacted LUs and their surroundings, different variabilities in SQI 
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scores occurred. The modern agriculture fields exhibit diverse patterns among and within plots, which 

vary in response to applied treatments, irrigation, fertilization, and crops (Ohana-levi et al., 2018). 

Like the agricultural areas, our results show that the livestock settlements impacted SQI centroids 

that gradually decreased with distance. These hotspots of degraded SQI scores within the grazing LU 

are centered mainly around livestock pens, animal waste fills, poor land cultivation, and excessive 

organic matter accumulation in the feeding areas (Amiri et al., 2008). In contrast, less affected in-

between soils exhibited relatively good SQI values. 

The overall SQI map depicts the variation in soil processes derived from its assembled individual 

soil indicators. The EC map accorded well with the SQI map. Higher salinity was observed in 

weathered and disintegrated soils (i.e., very bright chalk and marlstone) and soils in proximity to 

Bedouin villages, and steep exposed hillslopes correlated with poor SQI scores. Soil brightness could 

be an explanatory factor for the bright chalky soils, where a positive correlation was found between 

soil whiteness and high salinity levels (da Neto et al., 2017; Moreira et al., 2015). The highly SQI-

ranked limans profited from the low predicted salinity levels. However, some agricultural LU and 

stone-wall terrace presented high predicted EC values and high SQI scores. It could be assumed that 

other indicators took precedence over EC in influencing the overall soil quality within these closed 

systems. In this regard, the SAR and P (and the poorly predicted K) maps show a similar trend of 

high predicted values in the agro-systems mentioned above that correlate with lower SQIs. This 

matching trend can refer to the PCA results (Table 2 and Appendix A), where both SAR and P were 

found to be the most significant properties under PC1 and showed very similar factor loadings, with 

EC placed only under PC2. High measured SAR values imply an excessive sodium content in 

irrigation water and other fertilizers that act as potential adsorptions to the soil particles, which risks 

causing soil sodicity. High sodicity levels in the soil can deteriorate the water infiltration rate and 

hydraulic conductivity, limiting the plant available water and eventually presenting hazards to the 

soil health (Robbins, 1984).  

The SOM distribution was mainly concentrated in some of the agricultural fields and the nearby 

agro-pastoral settlements. Much of the soil organic compound concentration is derived from cropping 

and herding occurring along the Zin Stream, as seen by the precipitation of transported organic 

material across the streambed in the SOM predicted map. The large-scale prediction value of SOM 

reached an agreement of 0.723, close to the 0.71 predicted SOM mapping value presented by Ou et 

al. (2021) over a study area in China. For its decisive role in the hydrological properties and material 

retention in the soil, the soil texture was found significant for both sand and clay. The predominant 

sandy-loam texture of the region found a high prediction accuracy for sand abundance (R2
adjPred = 

0.853), compared to more temperate climates with loam and silt-loam soil textural classes in Germany 

(0.77; Kanning et al., 2016) and the Czech Republic (0.67; Žížala et al., 2017), but with a significantly 
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lower agreement for smaller clay fractions (0.706) compared to clay-rich soils in Brazil (0.78; 

Bellinaso et al., 2021).  

Although most detected elements were linked to spectral features recognized by previous 

literature, we found that other signal interferences caused some additional peaks. These could 

originate from mixed pixels, surface brightness, the BRDF effect, restricted image spatial resolution, 

and the remnants of residual organic and non-soil material common in relatively noisy data of this 

kind (Ben-Dor et al., 2009; Schläpfer et al., 2015). Achieving a color-balanced multi-striped 

hyperspectral image is highly challenging and assumes an inherited degree of BRDF error for such 

rugged terrain with multiplex viewing and illumination angles (Jia et al., 2020). A specific gradient 

was observed for the BRDF disruption, despite removing the image fringes. Increased interference 

and striping appeared in models with weaker prediction accuracy, meaning significant prediction 

models were robust enough to overcome the BRDF impediment to present a credible contiguous soil 

property representation.  

Nevertheless, the quantitative capabilities of IS for large-scale soil monitoring, in general, and 

soil quality assessment, in particular, have proved to possess strong prediction competence. IS 

applications were recognized as being a comprehensive, time-efficient, non-destructive, and 

reproducible analytical approach. At this point, the sensors are mostly airplane-carried and restricted 

to a specific regional spatial extent due to the current lack of operational hyperspectral satellite 

platforms (Ong et al., 2019). However, this is starting to change as various soil-induced high signal-

to-noise ratio spaceborne imaging spectrometer missions embark on their first steps in orbit to make 

their acquired imagery accessible for future studies (Chabrillat et al., 2019). Such missions include: 

the Italian–Israeli SHALOM (Spaceborne Hyperspectral Applicative Land and Ocean Mission) with 

10-m spatial resolution and 240 spectral bands scheduled for 2024 (Feingersh & Ben-Dor, 2015); the 

Italian PRISMA (PRecursore IperSpettrale della Missione Applicativa) launched in March 2019 with 

30 m per pixel and 238 bands (Loizzo et al., 2018); the French HypXIM provisioned for 2021 with 

pixel width starting from 8 m and 210 bands (Michel et al., 2011); the German EnMAP 

(Environmental Mapping and Analysis Program) planned for 2021 containing 30-m resolution and 

228 wavebands (Guanter et al., 2015); the International Space Station (ISS) mounted NASA's 

HyspIRI (Hyperspectral InfraRed Imager) with 30 m pixel size and 210 bands in 2018 (Lee et al., 

2015); and the Japanese HISUI (Hyperspectral Imager SUIte) in December 2019 with 30-m resolution 

and 185 spectral bands (Matsunaga et al., 2013). The current research could stimulate potential soil 

studies and questions in future hyperspectral earth-observing space platforms for soil applications at 

regional and global scales. 
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5 Conclusion 

The effects of LU changes, derived from ancient and modern human activity and disturbance of 

the natural environment, are crucial in ecological preservation and environmental health monitoring, 

in general, and for soil quality assessment. The impact of these land transformations is particularly 

acute when they occur in harsh resource-limited arid conditions such as the Avdat region in Israel’s 

Negev Desert. In this study, a novel approach was developed for soil quality assessment by applying 

the IS method for a large-scale continuous and precise mapping of the overall SQI and individual soil 

indicators over the entire study area, particularly under extreme arid climate conditions. The 

assessment was based on the regression of the measured indicators and the highly detailed spectral 

information collected from an acquired hyperspectral image. The image-extracted spectra were first 

classified to examine their inherent separability among the four tested land-uses. Then the soil 

properties and the overall SQI were correlated using SVM-R, which managed to predict the measured 

SQI well on the local point-scale and the predicted regional mapping. As a result, seven soil properties 

were successfully mapped over the entirety of the AisaFENIX image. The significantly predicted 

regional maps have depicted the most prevalent soil-forming and degrading processes causing various 

environmental disturbances, both natural and human-made, affecting the land and the soil quality 

through different mechanisms. Many challenges are associated when using IS, like adjusting the 

assessment model to changing types of soils, climates, scales, and land-uses, as well as overcoming 

limitations derived from the imaging process, such as high operational costs and the lack of 

continuous image acquisition over time for long-term monitoring. Despite all these, the strong 

quantitative capabilities of IS affirm its accuracy, time-efficiency, scalability, and reproducibility 

even in challenging dryland conditions. This study underscores the applicability of IS for soil function 

examination under a large variety of environmental conditions and scales, which could be an essential 

tool for sustainable and efficient land management in degraded land.  

Acknowledgments  

This project has received funding from the European Union's Horizon 2020 research and 

innovation program “European Long-Term Ecosystem, Critical Zone, and Socio-Ecological systems 

Research Infrastructure PLUS” (eLTER PLUS) under grant agreement no. 871128. The authors wish 

to thank Mr. Alexander Goldberg for soil collection, analysis, and logistical support in the field and 

laboratory work, Dr. Natalia Panov and Dr. Jisung Chang for hyperspectral images preprocessing, 

and Mr. Vladislav Dubinin for statistical and methodological advice. 

 

 



 

[88] 
 

Appendices 

 

 

Appendix A: Principal component analysis (PCA) bi-plot demonstrating the loading factor of the different scored soil 

indicators for the interactions of PC1 and PC2. AWC: available water content, NO3¯: nitrate, SOM: soil organic matter, 

EC: electrical conductivity, SAR: sodium adsorption ratio, P: phosphorus and, K: potassium. 

Appendix B: Confusion matrix of the land-use land-cover (LULC) minimum distance classification for the 

AisaFENIX hyperspectral image, resampled to Landsat 8 spectral resolution (Fig. 5B). 

Class Observed Producer 

accuracy 

(%) 

User 

accuracy 

(%) 

Overall 

agreement rate Predicted 
Very 

bright soil 

Bright 

soil 
Soil 

Dark 

soil 

Road/ 

Built-up 

Very bright soil 1599 150 0 0 8 99.69 91.01 
Total 

accuracy: 

95.11% 

 

Kappa (Kc): 

0.928 

Bright soil 5 4126 77 3 72 95.13 96.33 

Soil 0 40 12450 680 0 99.36 94.53 

Dark soil 0 16 3 3156 9 78.57 99.12 

Road/Built-up 0 0 0 147 2959 97.05 95.27 

Total 1604 4337 12530 4017 3049 100 100 

      Total   

Area (km2) 0.25 4.03 16.03 2.97 0.25 23.53   

% of total area 1.08 12.63 68.13 17.11 1.05 100   
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אקולוגיות גרם להפיכת מערכות  ו(  LUבשימושי קרקע )משמעותיים  גידול האוכלוסייה העולמי הביא לשינויים  תקציר:  

הביאה ,  למערכות מנוהלות אדםמערכות אקולוגיות טבעיות  . התמרה של  טבעיות רבות למערכות הנשלטות על ידי האדם

דורשת   שינוי בשימושי קרקע. דינמיקה כזו של  רבים  איכות קרקעמדדי  משפיעים על  ה   בתנאי הסביבה  לעיתים להידלדלות

מרכיבי הקרקע השונים   המשפיעים על    מדולדליםל לתנאים סביבתיים  ניצול רב יותר של משאבים, מה שגורם בדרך כל

 צחיחות  אף יותר בסביבות    מחריפה  תופעת הידלדלות קרקע  .  ועל בריאות הקרקע הכוללת, והשירותים שהיא מספקת לאדם 

ה כמו שטחים  בהם  מוגבלים  ומדברמשאבים  הקרקע  איכות  להערכת  מתאימות  גישות  בפיתוח  צורך  יש  לפיכך,  תפקוד  . 

יחסית,   נמוךאורגני  ובעלות תכולת חומר  הקרקעות באזורים אלה בדרך כלל לא מפותחות  ו  באזורים יובשניים, מאחר  הקרקע

( SQIאיכות הקרקע )  השימוש באינדקסים להערכת.  זמינות המים בהם נמוכה וכן הפעילות המיקורובילית בקרקע מוגבלת

הערכת טיב קרקע .  י שימושי קרקע שונים משפיעים על מדדי טיב הקרקעונמצא כהוכחה היטב כיעילה בסביבות צחיחות  

מתייחסות לשילוב של המדדים הכימיים ביולוגיים ופיזיקאליים של הקרקע לכדי מדד כולל המעיד על מידת תיפקודה. במחקר  

אזורי ע"י שימוש   ספקטראלית, ממדידות נקודתיות ועד לקנה מידה-זה נעשה שימוש בגישות מבוססות חישה מרחוק היפר

מקנה מידה איכות קרקע    ם במדדיהבדלי  . שימוש בספקטרוסקופיה מאפשר למדודםספקטראליי-בחיישנים מוטסים היפר

זיהוי   אזורי ע"י  ועד  )החזר  נקודתי  )  האינפר(,  VISבתחום הנראה  )  (NIRאדום קרוב  טווח (SWIRוהרחוק  , הכוללת 

ספקטרלית מסייע בהערכת תכונות קרקע פיזיות, ביולוגיות -ננומטר. שימוש בחישה מרחוק היפר 400-2500ין ב  ספקטרלי

)למשל, חקלאות,   וקרקעות שעברו שינוי עקב פעילות אנושית  וכימיות על סמך הבדלים ספקטרליים בין קרקעות טבעיות  

ערכת איכות הקרקע בסביבות יבשות שעברו השפעות הישימות של מודל ה(. בעבודת הדוקטורט הזאת נבחנה  מרעה וכריה

 התזה מחולקת לשלושה פרקים מרכזיים.   .ספקטראלית-ע"י כלים שונים של חישה מרחוק היפר אנתרופוגניות שונות

 

שונים   שימושי קרקע שונימאפייני קרקע לשלושה    14-כהערכת איכות קרקע המשלב  לבפיתוח מדד    התמקד  הפרק הראשון

אזור עבדת במרכז הנגב, ב  ע"י ספקטרוסקופיה  בקנה מידה אזורי(  ושטח טבעי לייחוס  ,מרעה  רנית וקדומה,מוד  )חקלאות

ישראל. מטרת המחקר הייתה ליישם, למדוד ולהעריך את תכונות הקרקע בהתבסס אך ורק על ההבדלים הספקטרליים בין 

הנגב. מטרה זו הושגה באמצעות פיתוח והטמעה  של מרכז צחיחהעל ידי האדם בסביבת  המנוהלות שימושי הקרקע השונים

מספקטרוסקופיה שנוצרו  כימומטריות  טכניקות  במעבדה  של  להערכת  .  שנמדוד  אינדק  )פותח  הקרקע  (, SQIאיכות 

. ונבחנו ההבדלים במדדי הטיב בשימושי הקרקע השוניםתכונות קרקע פיזיקליות, ביולוגיות וכימיות,    14המבוססים על  

ממדידות    .שהושווה למידות מעבדה המקובלות  בוצעו מדידות ספקטרליות במעבדה של דגימות קרקעעות ונאספו מדגם קרק

בין   SQIנמצאו הבדלים משמעותיים בערכי    אילו פותח אינדקס המשלב את כלל המדדים להערכת הטיב הכולל של הקרקע.

הקרקע ושימושי  השונות  הגיאוגרפיות  והמתמטיחידות  הסטטיסטיות  השיטות  של .  הספקטרליים  ההבדלים  להערכת  יות 

מיון של מאפייני הקרקע בשימושי ( וניתוח PLS-R) ומודל רגרסיה רב משתנים(, PCAמאפייני הקרקע כללו אנליזה של )

השונים ערכי  PLS-DA)  הקרקע  בין  מתאמים  ו  המדידות הספקטראליות(.  שנמדדו  ותכונות קרקע  חושבו   SQI-חזויים 

)  R-PLSבאמצעות   מקדם  לפי  ה2Rוהוערכו  שגיאת   ,)-Root Mean Square Error of Clibration  ו--Cross

Validation  (RMSEC  ו-RMSECV( לסטייה  ביצועים  של  והיחס   ,)RPDה  .)-PLS-R   "מצוינים" חיזוי  ערכי  יצר 

. התוצאות  SOM-ו  EC, Cl, Na, Ca + Mg, SAR, NO3, P  מדדי קרקע    ו"טובים" עבור חלק ממאפייני הקרקע, כולל

 R2 = 0.90, RPD = 2.46, RMSEC = 0.034 גם הן הראו מתאמים גבוהים וטעות קטנה SQIעבור  PLS-Rשל מודל 

דיוק    הראה ערכי,  החתימות הספקטראליות של הקרקעותשל    PLS-DA-העל בסיס מודל  . סיווג  RMSECV = 0.057-ו

 מיון הקרקעות באתרי הדיגום השונים הראו יכולת הפרדה . לעומת זאת,  ושי הקרקעבמיון הקרקעות על בסיס שימ  גבוהים
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בין   שניתן להגיע להערכה מדויקתהיא    המרכזית מפרק זה  (. המסקנהKc = 0.80)  דיוק( וערכי  Acc = 0.82)  נמוכה יחסית

נמצא, כי שימושי הקרקע השונים . כמן כן  תכונות קרקע פיזיות, ביולוגיות וכימיות, על סמך ההבדלים הספקטרליים שלהן

תהליכי שונים    ולאפיין    משפיעים על המידע הספקטראלי, וניתן לחזות את האיכות הכוללת של הקרקע ע"י ספקטרוסקופיה  

שניתן  ב מוכיחות  התוצאות  אינטגרטיבית.  בגישה  הקרקע   להעריךקרקע  תכונות  רוב  ואת  הקרקע  איכות  את  בהצלחה 

 הרסנית, חסכונית בזמן ובעלות. גישה שהיא אינה , כדרך עקיפה לשיטות המעבדה המוקבלות ספקטרוסקופיהבאמצעות 

 

המחקר שואף להעריך   ככלי להערכת הצלחת השיקום.  השפעות של שיקום כרייה על איכות הקרקע  עסק בהערכת  השני  פרק  

של שיטות שיקום )כלומר, שיקום קרקע עליונה( על מאפייני איכות הקרקע בהשוואה לשטחים טבעיים סמוכים   את ההשפעה

נזקים  בחובה  טומנת  היא  אך  הכלכלי,  לפיתוח  משמעותית  תורמת  הכרייה  בישראל.  צחיח  באזור  פתוח  פוספט  במכרה 

משפיעה על איכות הקרקע, ולעתים קרובות היא   סביבתיים נרחבים, כגון הרס קרקע וזיהום מים ואוויר. פעילות הכרייה

איכות   גישת הערכתאינה מסוגלת לתמוך בתפקוד ובמבנה של המערכת האקולוגית. מטרת המחקר הנוכחי היא ליישם את  

בהתאם לכך, המטרה   ישראל.ב( כמתודולוגיה לכימות מצב שיקום הקרקע במכרה פוספט פתוח בסביבה צחיחה  SQIהקרקע )

נו הייתה לקבוע האם שיטת שימור הקרקע העליונה דומה לאזור הטבעי הסמוך מבחינת תכונות הקרקע ואיכות של  הראשונית

זה. המטרה השנייה שלנו הייתה להעריך את  הקרקע הכוללת, למרות תנאי הסביבה והאקלים הקיצוניים של אזור צחיח 

ל ידי השוואת שלבי השיקום השונים המיושמים  כפונקציה של זמן ע  להערכת טיב קרקעהצלחת השיקום בהתבסס על גישת  

העליונה  ע"י שמירה על שכבת הקרקע  הקרקע  שיקום  ששיטת    של המחקר היא. לכן, ההשערה  שאזור המכרה  באתרים שונים

, כאשר טווח הזמן מאז השיקום הכוללוהשיקום  איכות הקרקע  את    פוספט, תשפרבמכרות  והשבתה לאחר תהליך הכרייה  

 שיטות   בחנובסביבה כה צחיחה. בהקשר זה,  האיטית יחסית של קרקעות  עקב התפתחות    השיקוםהליכים  ישפיע גם על הת

בהשוואה למערכת הטבעית הבלתי מופרעת הסמוכה, תוך   השבה של הקרקע העליונה לאחר כרייהשיקום אקולוגית הכוללת  

. פיתחנו מודל פיזיות, ביולוגיות וכימיותתכונות קרקע    11  -ע"י בחינה של כשעברו טרנספורמציה    במדדי הקרקעשימוש  

. התוצאות שלנו חשפו הבדלים משמעותיים המאפשר לשכלל את איכות הקרקע הכוללת באתרי השיקום השונים   יסטטיסט

במחקר   באתרים ששוקמו מוקדם יותר.בין אזורי השיקום לבין האזורים הטבעיים הסמוכים, עם ערך איכות קרקע גבוה יותר  

קרקע, כגון חומר אורגני בקרקע, בביולוגיים    על המדדים   משפיעה בעיקרהקרקע העליונה  ע"י השבת  שיטת שיקום    נמצא כי

הייתה השפעה של , ובמידה פחותה,  בקרקע מדברית  להתפתחות קרומים ביולוגיהחלבוני קרקע ופוליסכרידים הקשורים  

הפיזיקליים הקרקע  ואחריו    מדדי  החדירה,  קצב  השיקוםמא(.  AWC)בעיקר  העליונה   פייני  הקרקע  שכבת  השבת  של 

של קרום ביולוגי, החיוני לייצוב פני הקרקע ומשפיע על קצב חדירת המים וזמינות חומרי הזנה.   התפתחותמעודדים את  

ולכן יתכן והשפעתם    האינדיקטורים הכימיים לא הראו הבדלים משמעותיים בין רוב האתרים לאיכות הקרקע הכוללתמאידך,  

השפעה על מידת הצלחת השיקום   ישנה חשיבות בהערכה של מרכבי הקרקע הביולוגיים והפיזיקליים, שלהם. לסיכום,  פחותה

 .צחיחה, כדי לכמת ולהעריך שיטות שיקום במערכות אקולוגיות והשבת הקרקע למצבה הקודם

התמקד בהערכת ההשפעות של פעילויות אנושיות )כלומר, שימושי קרקע כגון מרעה, חקלאות מודרנית   הפרק השלישי,

באזור המחקר של אזור עבדת. בהתבסס  מוטסת    תחישה היפר ספקטראליומערכות קציר נגר( על איכות הקרקע באמצעות  

יקרית של מחקר זה היא להעריך המטרה הע  בסביבה צחיחה.  קרקעותעל    לשימושי קרקעעל ההשפעה המשמעותית שיש  

חישה מרחוק אמצעות יישומי  של שימוש קרקע על מרכבי הקרקע השונים ואיכות הקרקע הכוללת  את ההשפעות  ולמפות  

למיפוי רציף של מאפייני קרקע   תחישה היפר ספקטראלי( הדגמת היכולת של  1המטרות כוללות )ספקטראליים.   -היפר

כימית קונבנציונלית   מדידות מעבדה( בחינת השילוב בין  2על פני כל אזור המחקר; )  הכוללומדד איכות הקרקע    השונים
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( 3; וכן )תמידע מהדמאות היפר ספקטראליולקרקע לבין תרומת הממד הספקטרלי ליכולות הניבוי מבוססות רגרסיה של  

הכוללים מערכות חקלאות, מרעה על דפוסי בריאות הקרקע באזורים צחיחים    בשימושי הקרקעהערכת ההשפעה של שינוי  

מאפייני קרקע פיזיקליים,   12. לשם כך נבחרו  הטבעיתקרקע  ל  ביחס( למטרות חקלאות וייעור  RHSs)וערכת קציר נגר  

בשימושי ( כשיטה להערכת ההשפעות המשמעותיות של שינויים  SQIמדד איכות הקרקע )ששולבו יחד לביולוגיים וכימיים  

הערכת שימש לפיתוח מודל חיזוי עבור  ש  AisaFENIX  יההיפר ספקטרלהחיישן    הוטס ישראל.  באזור צחיח בדרום    הקרקע

 הראו יכולת הפרדה ספקטרלית עצמה,  -בקנה מידה אזורי. החתימות הספקטרליות, שהופקו מהתמונה ההיפר  טיב הקרקע

. המתאם בוצע באמצעות PLS-DA  (OA = 95.31%, Kc = 0.90)מודל    באמצעות  שימושי הקרקעבין ארבעת    טובה

השונים   ומדדי הקרקעהנתונים הספקטרליים    לבחינת הקשר בין(  SVM-R)  המבוססים על למידת מכונהמודלים רב משתנים  

מדד איכות היו בקורלציה מובהקת עבור מספר מאפייני קרקע, כולל    SVM-R. המודלים של  ומדד איכות הקרקע הכולל

(. שבעה מאפייני R2adjPred = 0.78)  אזוריות  טיב קרקעם חיזוי מוצלח של מיפוי  (, עR2adjVal = 0.87הכולל )  הקרקע

 SOM, pH, EC, SAR  מדדי טקסטורת הקרקע )חול, חרסית וסילט(, כולל  נוספים נמצאו בקורלציות גבוהות בניהםקרקע  

נטגרטיביות להערכות של ושיטות סטטיסטית אי  תחישה היפר ספקטראלי, שימשו בהצלחה לפיתוח מפות חיזוי. יישום  P-ו

בקנה   בסביבות צחיחות  תהידלדלובריאות הקרקע והערכת תהליכי    ולאפיון של את דיוק הניבוי    מאפשר לשפר איכות הקרקע  

ומציג את  ויכול להוות דוגמה למשימות חלל עתידיות    של קרקעות. מחקר זה מבסס כלי מדויק לניהול בר קיימא  מידה אזורי

 . בקנה מידה עולמישומים של הערכת איכות קרקע למחקרים וייהפוטנציאל 

 

 
 


