Incoherent Feedforward Loop as a Clock Signal for Synchronizing Signals in Biological Systems
Rongying Huang1, Valeriia Kravchik1, Ilan Oren1, and Ramez Daniel1

Abstract
Asynchronous signals in synthetic gene networks can result in fault outputs and system failure. To address this challenge and meet the growing demands for user-defined control in biomedical applications, this research proposes a clock signal to integrate input signals and generate a synchronized output. The clock signal utilizes an incoherent type-1 feedforward loop (I1-FFL) network, which exhibits stable behavior and enhanced response speed, as shown through mathematical models and simulations. Our proposed biological clock serves as a promising solution for synchronizing asynchronous inputs in synthetic gene networks, enabling temporal control over gene expression dynamics, and providing a timing reference for multi-input systems in various applications.

1Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

My name: Rongying Huang
Name of supervisor: Ramez Daniel
Academic institution: Technion - Israel Institute of Technology