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Abstract: Sexual manipulation in the giant freshwater prawn Macrobrachium rosenbergii has proven
successful in generating monosex (both all-male and all-female) populations for aquaculture using a
crustacean-specific endocrine gland, the androgenic gland (AG), which serves as a key masculinizing
factor by producing and secreting an insulin-like AG hormone (IAG). Here, we provide a summary of
the advancements from the discovery of the AG and IAG in decapods through to the development of
monosex populations in M. rosenbergii. We discuss the broader sexual development pathway, which
is highly divergent across decapods, and provide our future perspective on the utility of novel genetic
and genomic tools in promoting refined approaches towards monosex biotechnology. Finally, the
future potential benefits of deploying monosex prawn populations for environmental management
are discussed.

Keywords: androgenic gland; decapods; environmental management; IAG-switch; insulin-like
peptide; sexual manipulation

1. The AG and IAG-Switch in Crustaceans

A brief history of the discoveries of the AG and the IAG in crustaceans, with an
emphasis on decapods.

In vertebrates, sexual development cascades are well characterized, including the
pivotal role of sex steroids. Studies have investigated the presence of sex steroids and
their potential role in sexual development in crustaceans. Sex steroids, including androgen,
estrogen, and progestogen, have been identified in decapod tissues, such as the gonads and
eyestalk [1–4]. Although some studies have explored the effects of hormone treatments
on sexual development and reproductive processes [5–8], the literature regarding the
underlying mechanisms and factors influencing the outcomes remains limited and lacks
clear evidence.

Instead, an endocrine gland unique to male crustaceans from the class Malacostraca
was shown to establish masculinization. The first mention of the gland was in 1947 in
the male reproductive system of the blue swimming crab Callinectes sapidus Rathbun [9],
followed by its discovery in many other decapod crustaceans (Figure 1A,B), while its
function was deduced by the early work of [10] in the amphipod Orchestia gammarella,
demonstrating for the first time an androgenic function of the unique gland, thus named the
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androgenic gland (AG) [10]. Bilateral removal of the AGs from O. gammarella males ceased
the differentiation of secondary characteristics and caused a decrease in spermatogenesis.
In the reciprocal study, AG implantation into O. gammarella females caused masculinization
of the primary and secondary sexual characteristics. However, gonads implanted into
the opposite sex had no effect on the host. These studies led to the conclusion that the
AG is the exclusive source of a hormone responsible for the development of primary and
secondary male characteristics [10–12]. In decapods, similar results validated the conserved
key role of the AG in masculinization; immature and mature giant freshwater prawn
(Macrobrachium rosenbergii) females implanted with AG developed appendices masculinae
(male-specific protrusions that develop bilaterally on the second pair of swimming legs),
while females implanted with vas deferens or testicular tissue developed normally [13].
In the red swamp crayfish, Procambarus clarkii, AG implantation into immature females
inhibited vitellogenesis [14], while ovarian regression ensued in AG implanted females of
the mud crab Scylla paramamosain [15]. In the Chinese mitten crab, Eriocheir sinensis, AG
extracts from S. paramamosain and E. sinensis injected into females caused the development
of external male characteristics [16].
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Figure 1. Monosex population aquaculture of the giant freshwater prawn Macrobrachium rosenbergii:
‘the tools of the trade’. (A) The androgenic gland (AG) was first discovered in a decapod in 1947,
although it was not until 2007 that the first decapod AG-derived insulin-like peptide (IAG) encoding
sequence (IAG) was identified. This photo shows the AG situated alongside the sperm duct in the
Australian redclaw crayfish, Cherax quadricarinatus. (B) Proximal parts of the male reproductive
systems of M. rosenbergii males; cross-section of the terminal ampullae (TA) with the sperm duct (SD)
and AG area. The cells of this gland, following an endocrine manipulation to induce its hypertrophy,
are dispersed and injected into females to induce sex change into neo-males, which generates all-
female populations. Drawing—Dr. Shaul Raviv (C) Following decades of research prior to the advent
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of high-throughput sequencing, the IAG is now identified in multiple decapod species, where it is
found to primarily express in the AG. The gene encodes a signal peptide, followed by a B chain, a C
peptide, and an A chain. During translation, the signal peptide is cleaved off, followed by cleavage of
the C peptide, leaving the B chain and A chain interlinked with two disulphide bonds and another
disulphide bond within the A chain (linear model), rendering the mature IAG with an insulin-like
three-dimensional structure signature. Silencing IAG in early stage of male development enables sex
change into neo-females, which generates all-male populations.

The attempts to isolate the AG hormone raised a debate with regard to the chemical
nature of the active substance, with evidence suggesting either a protein or a lipidic
nature. In isopods, Katakura (1975) partially purified the active protein from the AG of
Armadillidium vulgare and showed that a single injection of the extract into females induced
masculinization of the secondary sexual characteristics [17]. The lipidic and steroidal
extracts of the AG did not induce masculinization [18]. A series of studies in the isopod,
A. vulgare, purified and elucidated the structure of an androgenic hormone [19,20]. Isolation
and characterization of a cDNA encoding a precursor of the hormone showed a resemblance
to the insulin superfamily structure, comprised of a signal peptide, B chain, C peptide,
and A chain [21]. Later, similar androgenic hormones with highly conserved protein
sequences were identified in two additional isopod species, Porcellio scaber and Porcellio
dilatatus [22]. In decapods, biochemical studies [23] and histological observations [24] of
lipidic substances in the AG suggested that steroids act as androgenic hormones. Efforts
to find genes orthologous to the isopods’ androgenic hormones in the group of decapods
have failed. It was not until 2007 when the first AG-specific gene, expressed exclusively
in males, was discovered in the crayfish Cherax quadricarinatus, termed insulin-like AG
factor (IAG) [25] (Figure 1C), followed by its discovery in M. rosenbergii [26], demonstrating
structural similarity to the insulin superfamily (Supplementary Data S1 and S2). The
identification of the first decapod IAG-encoding gene signifies a longstanding gap in
our understanding of the AG and its function in decapods, following decades since the
discovery of an androgenic hormone in isopods. The finding was enabled through a
subtractive cDNA library prior to the prevalent use of next-generation sequencing. Since
the discovery of IAG in these two species, IAG-encoding sequences have been identified
in a wide range of decapod species including gonochoristic, hermaphrodites [27,28], and
parthenogenic [29], of commercial and ecological significance, greatly facilitated by the
next-generation sequencing, which is commonly used nowadays.

2. Manipulating the IAG-Switch

From early surgical attempts at the AG level up to state-of-the-art molecular manipu-
lations to achieve full and functional sex reversal

Early studies of AG ablation and implantation established the crustacean AG as a key
sexual differentiating organ. The IAG hormone secreted from the AG serves as a master
switch in decapod crustaceans, in which IAG expression induces masculinization and its
absence results in feminization, thus termed the ”IAG-switch” [30].

Moreover, unlike vertebrates, in male crustaceans, the endocrine and gametogenic
functions are separated into two distinct organs, the AG and the testis, respectively [31,32];
thus, manipulation of the AG can be performed without affecting the gonad.

With respect to sexual plasticity, one of the most studied crustaceans is M. rosen-
bergii, which displays a fascinating social hierarchy [33], with distinctive morphotypic
differentiation of the males and clear differences between males and females in growth
patterns (Figure 2A,B). Since males grow faster than females, an interest in developing
all-male populations was explored based on a small-scale cage experiment showing that
all-male populations might provide double the yield compared with mixed and all-female
populations [34] (Figure 2C). The above triggered experiments of bilateral AG ablation at
an early juvenile developmental stage, which resulted in complete sex reversal in func-
tional neo-females. When mated with normal males, these neo-females produced all-male
progeny [35]. The timing of AG removal was shown to be critical for the manipulation
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to succeed. M. rosenbergii males that were andrectomized in the youngest developmental
stage exhibited complete feminization, including the development of oviducts and female
gonopores and the initiation of oogenesis, in contrast to later developmental stages in which
males were either partially feminized or not feminized at all [36]. The first mass production
of all-male populations was established by microsurgical AG ablation at early differenti-
ation stages; however, the production process had drawbacks such as low microsurgery
success rates, long duration between microsurgery, and identification of neo-females and
intensive labor demand [37]. It became evident, though, that a biotechnology based on
manipulation of this endocrine gland could provide the long-sought solution for monosex
population aquaculture.
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Figure 2. Monosex population aquaculture of the giant freshwater prawn Macrobrachium rosenbergii:
both all-male and all-female populations might be advantageous. (A) Weight distribution of male
morphotypes and females in a mixed population. Sample groups of females, small male (SM), orange-
claw male (OC), blue-claw male (BC), and no-claw male (NC) under extensive stocking density. (B) A
large dominant male harvested with four females from the same population. Note that all the females
carry eggs and are of uniform size. Photograph—Tomer Ventura. (C) A small-scale pond study
concluded that all-male giant freshwater prawn populations, when selectively harvested, produce
double the cumulative yield when compared with mixed-sex and all-female populations. (D) Weight
distribution of all-female and mixed population at the end of the grow-out season. Females grow
uniformly, with better survival rates, even at high stocking densities.
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The needed transformation from surgical manipulations to molecular methods was
completed through the use of RNA interference (RNAi) gene knockdown [38]. This method
has contributed to clarifying the functionality of many crustacean genes of importance to
metabolism, development, growth, and reproduction [39]. The RNAi-based biotechnology
was a game-changer in the production of M. rosenbergii monosex populations. Initial
use of this method to silence the IAG in mature M. rosenbergii males showed reduced
spermatogenesis and caused AG hypertrophy [26]. Given the temporal effect and non-
GMO nature of the intervention [40], manipulating the expression of the IAG-switch was
suggested as a replacement for the microsurgical removal of the AG by using IAG silencing
prior to sexual differentiation.

M. rosenbergii, like many Malacostraca species, bears the WZ/ZZ system of sexual heri-
tability, in which females are heterogametic (WZ) and males are homogametic (ZZ) [41–45].
A key component in detecting successful IAG-switch manipulations was the use of genetic
sex markers. These were not available for M. rosenbergii until 2010 [46], when the use of the
cumbersome amplified fragment length polymorphism (AFLP) enabled the identification
of the first genetic sex markers for this species. With the advent of restriction-assisted DNA
sequencing (RAD-Seq) and RNA-Seq, genetic sex marker identification is streamlined and
has indeed contributed to the discovery of these markers in multiple decapod species,
either within the WZ/ZZ or XX/XY systems [30,47]. Using genetic sex markers, success-
ful sex reversal of genetic ZZ males into functional ZZ neo-females was first achieved
through gene silencing in 2012 [48]. This technology now enables large-scale production
of all-male populations using RNAi, the first application of this method in the entire field
of aquaculture.

M. rosenbergii presents clear differences between sexes. Males display morphotypic
differentiation while females grow more uniformly, making monosex a clear advantage. The
AG is known to be key for this change in behavior, as was exemplified in C. quadricarinatus,
where AG implanted into females induces male-like behaviors [49]. While sex-specific
behaviors remain largely unexplored across farmed decapods, evidence suggests monosex
would be advantageous across decapods, as, for example, in the case of the commercially
most important marine shrimp, Litopenaeus vannamei, where subtle sex-biased behaviors
were recorded [50].

Although in M. rosenbergii, some of the males grow larger than females and reach the
highest sizes in a mixed population, thus providing economic benefits [51–53], all-female
culture was suggested to be more favorable under intensified conditions [54] (Figure 2D).
Production of all-male populations requires stocking in low densities due to aggressiveness
and territoriality. Males display a high variation in size distribution with strong dominance
in hierarchical social structure [33,55]. While females do not reach the size of the dominant
males, they grow more uniformly, as initially proposed in 1992 [43]. Manipulation of the AG
using surgical implantation of AG tissue from adult males into early developmental stage
females resulted in a fully functional reversal of sex to neo-males. However, the survival
and success rates of the functional neo-males were only ∼10% [43]. Malecha (2012) claimed
that the efficiency of producing all-female populations depends on increasing the success
rate of producing WZ neo-males via the use of exogenous AG materials [54]. In 2016,
through molecular manipulation of the IAG-switch, Levy et al. (2016) demonstrated a fully
functional sex reversal of WZ females into WZ neo-males by a single injection of suspended
hypertrophied AG cells [42]. Verification of the successful generation of neo-males was
enabled using genetic sex markers [46]. Above 80% of cell-injected females had developed
both appendix masculina and male gonopores. The injected sex-reversed females functioned
as males and were reproductive, thus considered neo-males [42]. This successful all-female
biotechnology has one drawback of being dependent on the relatively small amount of
AG cells found in a donor body; thus, lentiviral-transduced ectopic expression of IAG in
non-AG primary cell culture was attempted to increase the volume of relevant cells for
the process and avoid the male donor dependency in this biotechnology [56]. This is a
preliminary step to be further tested for applicability.
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3. Controlling Elements of the IAG-Switch

Since the discovery of the first decapod IAG [25], it has been found in a variety of
crustacean species, including prawns, shrimp, crayfish, lobsters, and crabs [30], providing
a wide context within crustaceans and a starting point for the challenge of discovering the
bridging cascade upstream of the IAG-switch. To date, IAG has enabled full sex change
only in M. rosenbergii, suggesting this molecular switch needs to be further explored to
fulfill its potential in other species. The path towards such discoveries of mechanisms
upstream of the IAG-switch is now open and could be studied using functional genomics
tools such as RNAi and CRISPR. Another interesting species with the above respects is the
crayfish C. quadricarinatus, in which sexual plasticity is reflected in naturally occurring WZ-
genotyped intersexual animals with an active male reproductive system and male secondary
sexual characteristics, along with an inactive ovary (i.e., naturally born WZ neo-males).
Intersexuality was manipulated by IAG silencing, which resulted in a sexual shift. This IAG-
switch manipulation resulted in male feature feminization, vitellogenin expression, and
oocytes with yolk accumulation [57]. Moreover, findings in hermaphrodites, particularly in
protandric species, suggest the IAG-switch plays a critical role in the natural sex reversal
path. Unlike gonochoristic species, the sexual differentiation process in hermaphrodites
does not relate to the early developmental stages but happens at the mature life stage
with a sexual transformation from maleness to femaleness. A study of the northern spot
shrimp, Pandalus platyceros, describes the IAG-switch using four stages: juveniles, adult
males, transitionals, and in adult females [28]. The IAG temporal expression pattern
in the AG was the highest in juveniles, declined in adult males, and was found to be
negligible during the transitional phase and adult females. This suggests that the IAG
has a crucial role in the early male differentiation and maturation stage. Moreover, IAG
loss of function through RNAi in mature P. platyceros males induced the masculine to
feminine sexual transformation that naturally occurs in this protandric species, supporting
the pivotal role of the IAG-switch in regulating the transformation between adult stages in
hermaphrodite species [28]. In M. rosenbergii adult stages, IAG was found to be correlated
with the reproductive readiness of male morphotypes. The expression levels of Mr-IAG in
the reproductively less active orange-claw males were significantly lower than in the blue-
clawed males and small males, suggesting a key role for IAG in regulating morphotypic
differentiation [58].

The research on the upstream controlling elements of sexual differentiation through
the IAG-switch is in progress, with functional studies suggesting diverse candidates for
this role (Table 1). In mature specimens of gonochoristic species, it seems that the IAG
is controlled as part of the eyestalk-AG-testis endocrine axis [59]. Within this axis, IAG
is thought to be controlled by upstream neuropeptides that are produced in the X-organ
(XO) and accumulated in the sinus gland (SG; both the XO and SG reside in the eyestalk,
forming a neuroendocrine complex known as the XO-SG), from where they are secreted.
The fact that eyestalk ablation in males causes hypertrophy of the AG [59,60] and IAG
over-expression [61] indicates that eyestalk neuropeptides serve as upstream controlling
elements of AG activity in adults [59,62]. Recent studies in E. sinensis [63] and S. paramamo-
sain [64] suggest regulatory feedback between the Crustacean Female Sex Hormone (CFSH)
in the eyestalk and IAG. In EsCFSH-1-silenced E. sinensis mature males, the expression
of EsIAG in the AG was significantly increased, while EsIAG knockdown significantly
increased the expression of EsCFSH-1 in the male eyestalk [63]. In S. paramamosain, in vitro
treatment with recombinant SpCFSH protein in AG significantly decreased the mRNA
levels of the signal transducers and activators of transcription (STAT)-binding site in the
IAG promoter. Based on these results, it was suggested that CFSH acts as an inhibiting
factor by suppressing the expression of SpSTAT, which then regulates SpIAG expression [64].
In the protandric hermaphrodite peppermint shrimp, Lysmata vittata, injection of recom-
binant CFSH1b suppressed IAG expression, and Lvit-CFSH knockdown stimulated the
male phenotype development [65]. Other eyestalk-borne neuropeptides suggested to play
a role in the eyestalk-AG-testis axis are members of the crustacean hyperglycemic hormone
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(CHH) superfamily of neuropeptides. In the Pacific white leg shrimp L. vannamei, RNAi of
two CHH genes, LvCHH1 or LvCHH2 induced elevated LvIAG expression, while injection
of their recombinant protein reduced LvIAG expression, suggesting inhibitory regulation of
CHHs over IAG [66].

Sexual development is a succession of three processes, starting with sex determination
occurring at the establishment of the zygote, which leads to the sexual differentiation
process, followed by sexual maturation (Figure 3). While the AG is regarded as a sexual
differentiating organ, the sex-determining mechanism is considered the primary process
that regulates the development and function of the AG [67,68]. Several candidates were
suggested as the transmitters between sex determination and sexual differentiation in de-
capods. In C. quadricarinatus, Sxl (sex-lethal) alternatively-spliced variants were suggested
to be involved in the mechanism of male sex determination/differentiation, with a gradu-
ally increased expression pattern in embryonic stages, higher transcript levels at early-stage
testis development, and significantly reduced CqIAG expression levels following CqSxl3
silencing [69]. In the mud crab, S. paramamosain, the transcription factor Doublesex (Dsx)
promotes Sp-IAG expression, while the transcription factor forkhead L2 (foxl-2) inhibits
it, as demonstrated in both in vitro cell experiments and in vivo RNAi studies [70]. Knock-
down of the invertebrate double-sex and mab-3 related transcription factor 2 (idmrt-2) in
S. paramamosain decreased the expression of Dmrt-like and foxl-2 genes in the testis, and
IAG in the AG [71]. In the black tiger shrimp, Penaeus monodon, RNAi of Dsx significantly
decreased the expression of PmIAG in the testis and was suggested as a positive regulator
of IAG by specific binding upstream of the IAG promoter [72]. Similarly, Dsx was suggested
to regulate IAG in the shrimp Fenneropenaeus chinensis, as knockdown of FcDsx resulted
in FcIAG transcript down-regulation [73]. In E. sinensis, RNAi of EsDsx1, EsiDMY, and
EsiDmrt1a reduced IAG transcription levels [74]. Direct interaction of the EsDsx-like protein
with the EsIAG promoter suggests its role as an upstream regulator of IAG [75]. Contrary
to this, knockdown of C. quadricarinatus Dsx induced CqIAG transcript levels [76]. In M.
rosenbergii, MrDsx expression was significantly induced in the testis and AG following eye-
stalk ablation, and gene knockdown of MrDsx resulted in a significant decrease in MrIAG
transcript levels in the AG, suggesting that eyestalk elements negatively control MrDsx,
which regulates the activation of MrIAG [77]. As part of the extensive research aimed at
elucidating the IAG signaling cascade in decapod species, IAG loss-of-function studies
have played a significant role in the understanding of the IAG downstream factors [78–83].
Still, in most of the studies on candidates upstream of the IAG-switch, it seems that the
intervention (usually RNAi) is too late to effectively influence sexual differentiation. That
can be potentially resolved by an oocyte-specific delivery (OSDel) tool for gene silencing
at the oocyte stage prior to egg laying [84]. Yet, the barrier of sex identification at an early
stage might be the main obstacle to understanding the sexual differentiation mechanism in
other decapod species that might be even more variable.

Table 1. Genes suggested as sexual development regulation upstream of the IAG-Switch.

Gene Species Tested Tissue
or Stage

Sex
Heritability
Mechanism

Effect on Sexual Differentiation Processes Reference

Dmrt11E

Macrobrachium
rosenbergii

Post larvae WZ/ZZ MroDmrt11E knockdown induced a
functional sex reversal [85]

Terminal ampullae WZ/ZZ MroDmrt11E knockdown reduced MrIAG
expression [86]

Macrobrachium
nipponense

Ovary and
hepatopancreas

(females)
Abdominal ganglia

(males)

WZ/ZZ
MniDMRT11E knockdown reduced MnVG
expression in females and increased MnIAG

expression in males
[87]
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Table 1. Cont.

Gene Species Tested Tissue or
Stage

Sex
Heritability
Mechanism

Effect on Sexual Differentiation Processes Reference

Dsx

Fenneropenaeus
chinensis

Male
cephalothorax WZ/ZZ

Two isoforms of FcIAG gene were
down-regulated following FcDsx

knockdown
[73]

Macrobrachium
rosenbergii AG WZ/ZZ MrDsx knockdown reduced MrIAG

expression [77]

Cherax
quadricarinatus

Cephalothoraxes
of undifferentiated

crayfish
WZ/ZZ CqDsx knockdown decreased CqIAG

expression [76]

SOXE Portunus
trituberculatus AG and testis XY/XX PtSoxE siRNA reduced PtIAG and PtIR

expression [88]

SOXB2-1 Eriocheir sinensis Testis WZ/ZZ
EsSoxB2-1 knockdown led to abnormal

nucleus transformation during
spermiogenesis

[89]

SOX9 Scylla
paramamosain Cell culture WZ/ZZ Sox9 binding site mutation in SpVIH

promoter reduced activity [90]

CHH1
Litopenaeus
vannamei

AG WZ/ZZ
Knockdown of either LvCHH1 or LvCHH2

resulted in increased LvIAG expression;
injection of their recombinant protein led to

decreased LvIAG expression.

[66]

CHH2

GC
receptor

Litopenaeus
vannamei AG WZ/ZZ LvGC knockdown increased LvIAG

expression [66]

MIH
Macrobrachium

nipponense
AG WZ/ZZ Gene knockdown increased IAG expression [91]

GIH
(VIH)

Masc Macrobrachium
rosenbergii Post larvae WZ/ZZ

MrMasc knockdown obtained full sex
reversal; Insulin-like signal pathway has

been identified in MrMasc
knockdown prawns.

[92]

Sxl Cherax
quadricarinatus

Undifferentiated
juvenile prawns WZ/ZZ Sxl3 knockdown decreased CqIAG

expression [69]

Foxl2 Scylla
paramamosain Ovaries WZ/ZZ Spfoxl2 knockdown increased SpVG

expression [93]

CFSH

Portunus
trituberculatus

Eyestalk, AG and
testis XY/XX

PtCFSH knockdown increased PtIAG
expression; injection of its recombinant

protein led to decreased PtIAG expression.
[94]

Scylla
paramamosain

Cultured AG WZ/ZZ Recombinant SpCFSH reduced
SpIAG expression [95]

Cultured AG WZ/ZZ Recombinant SpCFSH reduced
SpSTAT expression [64]

STAT Scylla
paramamosain Cultured AG WZ/ZZ SpSTAT knockdown reduced

SpIAG expression [64]

Tra2 Macrobrachium
nipponense Gonads WZ/ZZ MnTra2 Inhibited MnSxl expression [96]



Int. J. Mol. Sci. 2023, 24, 17433 9 of 18

Table 1. Cont.

Gene Species Tested Tissue or
Stage

Sex
Heritability
Mechanism

Effect on Sexual Differentiation Processes Reference

GEM Macrobrachium
nipponense AG and testis WZ/ZZ MnGEM knockdown increased MnIAG

expression and testosterone content [97]

BMP
receptor

Scylla
paramamosain

Pre/early/late
vitellogenic

females
WZ/ZZ SpBMPR knockdown decreased vitellogenin

receptor expression [98]

Abbreviations: AG, androgenic gland; BMP, bone morphogenetic protein; CFSH, crustacean female sex hormone;
CHH, crustacean hyperglycemic hormone; Dmrt11E, doublesex and mab-3 related transcription factor 11E; Dsx,
doublesex; Foxl2, forkhead box protein L2; GC, Guanylate cyclase; GEM, gem-associated protein 2-like isoform
X1; GIH, gonad inhibiting hormone; IAG, insulin-like androgenic gland hormone; IR, insulin-like receptor; Masc,
masculinizer; MIH, molt-inhibiting hormone; SOX9, SRY-Box Transcription Factor 9; SOXB2-1, SRY-related HMG
box group B2; SOXE SRY-related HMG box group E; STAT, signal transducers and activators of transcription; Sxl,
sex-lethal; Tra2, transformer-2; VG, vitellogenin; VIH, vitellogenin inhibiting hormone.
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Figure 3. From fertilization to maturation in the giant freshwater prawn Macrobrachium rosenbergii
through the IAG-switch. The process starts with the genotype determination, WZ or ZZ, followed
by developmental stages of embryos, larvae, and early post-larvae. An individual with a ZZ set of
chromosomes develops an androgenic gland (AG), which secretes the IAG, leading to the develop-
ment of a functional, mature male phenotype. In an individual with the WZ set of chromosomes, the
AG is absent, so there is no IAG secretion, and a functional, mature female phenotype is exhibited.
This system could be manipulated as a sex-differentiating switch, thus termed the “IAG-switch”.
However, the controlling elements upstream the IAG-switch are not yet elucidated.

4. Distinct Biotechnologies for Monosex Populations of Prawns

Description of the two biotechnologies and their respective uses at different husbandry
options.

Through manipulations of the IAG-switch, a high degree of induced sexual plasticity
in M. rosenbergii has been demonstrated. The manipulations afforded cases of functional WZ
males, ZZ females, and, surprisingly, even WW males and females [42,48,99]. IAG-switch
manipulations led to the pioneering development of two biotechnologies for M. rosenbergii:
all-male [48] and all-female [42] aquaculture. The RNAi-based biotechnology for all-male
aquaculture through dsIAG injection [100] facilitated a large-scale production of all-male
M. rosenbergii with 86% success sex-reversal of ZZ male to ZZ neo-female, then mating the
neo-females with normal males, yielding 100% of all ZZ male progeny exhibiting typical
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population structure of M. rosenbergii male morphotype differentiation [33,40]. Together
with the population structure, the temporal effect of the dsRNA in the target tissue proved
the safety of RNAi usage in all-male production [40], the first commercial use of RNAi in the
entire field of aquaculture. Shpak et al. showed the application of the technology beyond
one all-male generation and established three successive generations of W chromosome-
free ZZ prawn lines [101]. Up to date, over 15 consecutive W-free generations have been
reported in this population (Wahl, personal communication). The third generation of all-
males was comparable to males from a normal mixed population. The typical morphology
of the testicular lobes, spermatophore, and AG was demonstrated by a histology of the
testis and terminal ampulla in males from both populations. Gene expression patterns of
male-specific genes such as Mr-IAG and Mr-Mrr were similar in males from the all-male
third generations compared to males from a normal mixed population [101].

Correspondingly, the first biotechnology for all-female aquaculture by a single in-
jection of hypertrophied AG cell suspension enabled, for the first time, all-female mass
production in three steps: (1) WZ females were sex reversed into WZ neo-males by injection
of suspended hypertrophied AG cells. (2) crossing of WZ neo-males with normal WZ
females yielding a progeny with 25% WW females; (3) crossing the WW females with
normal ZZ males yielding a 100% WZ female population [42]. This technology enabled,
for the first time, a comparative large-scale field study of all-female versus mixed popu-
lations under extensive and intensive stocking conditions without the need for manual
segregation. This field study, in which all-female progenies were cultured without males
from Day 0, showed that all-female culture had superior performance to that of mixed
culture with respect to feed conversion ratios, survival rates, total yield, and uniform body
size, with stocking densities up to 4 times those usually practiced with mixed sex and
all-male populations of the species [102]. However, the road to a viable breeding stock for
all-female M. rosenbergii production necessitated a more efficient way to produce WW
females via further manipulations of the IAG-switch to achieve WW neo-males. Indeed,
this final manipulation of the sexual switch yielded WW females that were sex-reversed
by injection of suspended hypertrophied AG cells into fully functional WW neo-males,
which were then crossed with WW females to produce a Z chromosome-free breeding stock
population [99]. The case of all-female consecutive generations without the Z chromosome
was further investigated for three generations, showing that the performances of the WW
all-female population were comparable to the WZ all-female population in survival rate,
size uniformity, body weight, and yield [103]. This Z-free population has been managed
with no visible abnormalities for over 8 generations (Wahl, personal communication).

5. Molecular and Genomic Implications

The availability of NGS technologies yielded novel molecular and genomic tools that were
applied to several crustacean species [104]. Ample transcriptomic libraries of decapod crus-
taceans were studied, with several referring to sexually biased transcripts [27,28,105–108],
including the description of different stages in the life cycle of M. rosenbergii [109–111]. This
is true also at the genomic level, with published genomes of decapod species, including
the crayfish Procambarus virginalis [112] and C. quadricarinatus [113], the crabs E. sinen-
sis [114,115], Birgus latro and Paralithodes camtschaticus [116], the ridgetail white prawn
Exopalaemon carinicauda [117], the shrimp Neocaridina denticulata [118], L. vannamei [119],
Marsupenaeus japonicus and Penaeus monodon [120], and the lobsters Panulirus ornatus [116]
and Homarus americanus [121]. A high-quality M. rosenbergii genome, exhibiting distin-
guishable paternal and maternal sequences and enabling the identification of W/Z-specific
sequences [99], was also studied for future mapping at the chromosome level with resolved
chromatids and SNP mapping.

A major reliance of molecular functional research is based on the RNAi procedure,
which is readily available and frequently used as an instrumental tool for the study of
the transcriptional regulation mechanism upstream of the IAG-switch at early post-larval
stages [30]. However, when studying the upstream sex-determining factors that affect the
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IAG-switch, the post-larval stage might prove to be too late for the extensive functional
genomic efforts needed for such a challenging study in which some earlier interventions
seem to be needed. Thus, a genomic editing platform based on CRISPR is required for
manipulations at early embryonic stages. In recent years, the CRISPR-Cas genome-editing
tool was developed [122] and revolutionized life science research, enabling the induction
of targeted mutagenesis to determine the role of studied genes. In crustaceans, a few
cases were described using CRISPR to determine the role of genes in different processes
such as eye development [123,124], limb specification [125], chitinase activity [126], and
more. Recently, Molcho et al. reported the first genomic editing platform in M. rosenbergii,
presenting a CRISPR protocol through direct injection into one- to four-cell embryos, which
results in entire organism genome editing [127]. In the prawn E. carinicauda, knocking out
EcIAG and obtaining homozygous mutants with biallelic mutations led to sex reversal from
males to neo-females, suggesting CRISPR/Cas9 genome editing as an effective tool for
sex manipulation in crustaceans, further supporting monosex aquaculture [128]. However,
the transformation of applied technologies from RNAi interventions that do not affect the
genome into genetically modifying methods is debatable. Indeed, the first such modified
organism has been approved for aquaculture [129], while regulators in several countries
are debating whether minor CRISPR modifications will be more easily approved [130].
Given that the IAG-encoding gene was found to be residing on an autosome, gene editing
can potentially be harnessed to manipulate the IAG-switch even in WW superfemales [42],
which lack the male sex chromosome. Further research is therefore required to better
understand the upstream regulation of IAG expression (comparing promoter methylation
and acetylation patterns in males and females, and so forth).

6. Future Environmental Applications of the IAG Switch

Crustaceans’ hardiness and adaptability place them among the worst-known invasive
species, subsequently threatening biodiversity [131] and ecosystem stability [132]. One of
the leading invasive species on earth is the red swamp crayfish, P. clarkii, which is known
to cause considerable environmental and economic damage [133]. Production of P. clarkii
neo-females through IAG-switch manipulation, using RNAi-based biotechnology for all-
male aquaculture similar to prawns [100], was suggested as a sustainable solution with the
potential to greatly impact the aquaculture industry [134]. All-male crayfish aquaculture
is expected to have higher incomes and is safer than a mixed population by preventing
escapees from becoming invasive in regions where P. clarkii is non-native [134]. Savaya
et al. (2020) also suggested a demographic model that explores the potential of stocking
neo-females to control the invasive population in the wild by skewing the sex ratio of the
population [134]. Utilizing additional control tools would be important for ensuring the
efficacy of sex-skewing strategy in invasive population management [135]. To fulfill these
potential solutions, further study is required on IAG-switch manipulations in P. clarkii to
achieve fully functional sex reversal and monosex population production or the use of tools
such as gene drive [136–138]. With respect to managing invasive species, the availability
of M. rosenbergii monosex populations is not only advantageous for aquaculture mass
production but also for better safeguarding the environment from aquaculture escapees in
areas where M. rosenbergii could become an invasive species.

Another interesting environmental management strategy that was unlocked by the
availability of monosex populations is the use of prawns as biological control agents.
M. rosenbergii are voracious predators of pest freshwater snails. The possible use of non-
breeding monosex prawn populations poses them as excellent biocontrol agents against
such snails without the hazard of prawns establishing invasive populations that could
harm the environment and its natural biodiversity. Among the pest snails most noted are
freshwater snails that host the flatworm Schistosoma spp., which are responsible for the
parasitic disease schistosomiasis (bilharzia). Schistosomiasis is a serious human health
concern, mainly in Africa, with hundreds of millions of infected people [139]. Applying
monosex biotechnology in areas with abundant snail hosts can break the disease cycle [140].
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Apart from human health, snails are involved in the transmission of fish diseases in the
aquaculture industry. Extensive damage is caused to freshwater aquaculture by parasitic
diseases, such as those transmitted by the snails of the Thiaridae family, which hosts
the disease-causing parasitic Centrocestus species [141]. The genus Macrobrachium is not
vulnerable to Trematode infection [142,143], and studies demonstrated the high ability of
the prawn to abolish snail hatchlings [140,144,145]. Savaya et al. (2020) demonstrated the
first application of M. rosenbergii monosex populations as biocontrol agents in commercial
aquaculture ponds. A field experiment in Tilapia aquaculture ponds in Israel included
prawns as biocontrol agents, which significantly reduced the total biomass of Melanoides
tuberculate and Thiara scabra snails of all size classes, and the number of parasites per fish
was lower in ponds with prawns than in the control (no-prawns) ponds [146]. Another
invasive snail with a high impact on global agriculture is the invasive freshwater apple
snail (Pomacea spp.), one of the major unresolved problems worldwide with a significant
impact on global rice production, affecting not only economics but also natural ecosystems
and potentially also causing health issues [147]. Utilizing monosex prawn populations has
been suggested as a sustainable solution against the invasive apple snails and presents an
effective biocontrol method under different conditions. Future field validation experiments
are required for environmental risk assessment [144,148]. With respect to the treatment of
pest snails in agriculture, aquaculture, and even human disease, prawns as biocontrol agents
could become a crop by themselves, contributing additional quality protein sources or extra
income, thus suggesting a win-win solution and providing a sustainable solution that has
the cultural, economic, and environmental incentives to be propagated in perpetuity.
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