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The androgenic gland (AG)–a unique crustacean endocrine organ that secretes factors

such as the insulin-like androgenic gland (IAG) hormone—is a key player in crustacean

sex differentiation processes. IAG expression induces masculinization, while the absence

of the AG or a deficiency in IAG expression results in feminization. Therefore, by

virtue of its universal role as a master regulator of crustacean sexual development,

the IAG hormone may be regarded as the sexual “IAG-switch.” The switch functions

within an endocrine axis governed by neuropeptides secreted from the eyestalks, and

interacts downstream with specific insulin receptors at its target organs. In recent

years, IAG hormones have been found—and sequenced—in dozens of decapod

crustacean species, including crabs, prawns, crayfish and shrimps, bearing different

types of reproductive strategies—from gonochorism, through hermaphroditism and

intersexuality, to parthenogenesis. The IAG-switch has thus been the focus of efforts

to manipulate sex developmental processes in crustaceans. Most sex manipulations

were performed using AG ablation or knock-down of the IAG gene in males in order

to sex reverse them into “neo-females,” or using AG implantation/injecting AG extracts

or cells into females to produce “neo-males.” These manipulations have highlighted

the striking crustacean sexual plasticity in different species and have permitted the

manifestation of either maleness or femaleness without altering the genotype of the

animals. Furthermore, these sex manipulations have not only facilitated fundamental

studies of crustacean sexual mechanisms, but have also enabled the development of

the first IAG-switch-basedmonosex population biotechnologies, primarily for aquaculture

but also for pest control. Here, we review the crustacean IAG-switch, a unique crustacean

endocrine mechanism, from the early discoveries of the AG and the IAG hormone

to recent IAG-switch-based manipulations. Moreover, we discuss this unique early

pancrustacean insulin-based sexual differentiation control mechanism in contrast to the

extensively studied mechanisms in vertebrates, which are based on sex steroids.

Keywords: androgenic gland, IAG-switch, insulin-like androgenic gland hormone, monosex population, sex

determination, sex differentiation, sexual plasticity
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INTRODUCTION

To put the subject of this review into context, we start with a
brief history of the discovery of the androgenic gland (AG) in
crustaceans. In 1947, in the course of an anatomical/histological
study of the male reproductive system in the blue swimming
crab Callinectes sapidus, an “accessory” endocrine gland was
found adjacent to the sperm duct (1). Some years later, this
gland was termed the “androgenic gland” in light of its key role
in crustacean masculine differentiation, as shown by functional
experiments of AG ablation and implantation in the amphipod
crustacean Orchestia gammarella (2). In later experiments, testis
removal inmales or implanting females with testicular tissues was
found to be ineffective in causing sex reversal, thus suggesting
that the vertebrate-like gonadal testosterone is probably not
involved in crustacean masculine differentiation (3), and indeed,
in 1964, it was first reported that the cells of the AG bore greater
similarity to vertebrate protein-producing cells than to steroid-
producing cells (4). Thereafter, some functional experiments
involving the AG were performed not only by AG grafting but
also by injections of AG extracts (5). However, it took a while
until a specific AG hormone was first isolated from the terrestrial
isopod Armadillidium vulgare (6, 7). In 2007, subsequent to
the first transcriptomic identification of this hormone in a
decapod—the redclaw crayfish Cherax quadricarinatus—further
validation revealed the hormone structure to be that of an
insulin-like peptide (ILP) family member, and the hormone was
thus termed the “insulin-like androgenic gland” (IAG) hormone
(8). It took about another 10 years before the first report appeared
of the successful chemical synthesis of an IAG hormone—
that of the giant freshwater prawn Macrobrachium rosenbergii,
a commercially (9, 10) and environmentally (11) important
species (12). Since its first discovery, the IAG hormone has
been isolated and characterized in twenty-nine decapod species
(Table 1), including prawns, shrimp, crayfish, lobsters and crabs,
some of which are highly important for the aquaculture industry
worldwide (13), and, as this review will show, the IAG-based
sex differentiation mechanism is undoubtedly unique in the
Pancrustacea, a diverse taxon that contains all crustaceans
and hexapods.

SEX DETERMINATION AND SEX
DIFFERENTIATION IN CRUSTACEANS

In most organisms, sex is determined by chromosomes
[i.e., genetic sex determination; GSD (14)] rather than by
environmental factors [i.e., environmental sex determination;
ESD (15)] (16). The most common GSD systems are the XX/XY
and WZ/ZZ systems, in which females are homogametic and
males are heterogametic in the former mode of inheritance,
and vice versa in the latter (17). With some exceptions (18),
most prawn, shrimp and crayfish species bear the WZ/ZZ sex
determination system (13, 19–23), while some species of crabs
and lobsters bear the XX/XY system (24–27). In the animal
kingdom, there are only a few reports of sex-determining
genes being associated with the W/Z sex chromosomes. Among

TABLE 1 | IAG in decapod crustacean species.

Group Family Species GenBank accession

number

Prawn Palaemonidae Macrobrachium rosenbergii FJ409645.1

Macrobrachium nipponense JX962354.1

Macrobrachium vollenhovenii KJ524578.1

Macrobrachium lar AB579012.1

Palaemon paucidens AB588013.1

Palaemon pacificus AB588014.1

Lobster Palinuridae Sagmariasus verreauxi KF220491.1

Jasus edwardsii KF908794.1

Shrimp Penaeidae Litopenaeus vannamei KX589057.1

Fenneropenaeus chinensis JQ388277.1

Penaeus indicus MG022137.1

Litopenaeus occidentalis KX589058.1

Litopenaeus stylirostris KX589059.1

Marsupenaeus japonicus AB598415.1

Penaeus monodon GU208677.1

Pandalidae Pandalus platyceros KX619617.1

Crab Varunidae Hemigrapsus sanguineus MH580760.1

Eriocheir sinensis KU724192.1

Geryonidae Chaceon quinquedens KY497474.1

Portunidae Portunus pelagicus HM459854.1

Scylla paramamosain JQ681748.1

Callinectes sapidus HM594945.1

Portunus trituberculatus MH119940.1

Carcinus maenas HM594946.1

Crayfish Cambaridae Procambarus clarkii KT343750.1

Procambarus virginalis MF405195.1

Procambarus fallax KX619618.1

Parastacidae Cherax quadricarinatus DQ851163.1

Cherax destructor EU718788.1

them are the W-chromosome-associated DM-W gene, which
is vital for ovarian development in the African clawed frog
Xenopus laevis (28), and the Z-chromosome-linked DMRT1
gene, whose dosage is assumed to control the sex determination
process in the chicken Gallus gallus domesticus (29). In contrast
to the sparse knowledge on the genes associated with the
W/Z chromosomes (especially in crustaceans), the male sex-
determining genes that are associated with the Y chromosome
and that control masculinization in animals bearing the XX/XY
system have been well-characterized. Among these genes, most
mammals have the well-known SRY gene (30). Other examples
include the DMY/Dmrt1bY gene, which is associated with the
formation of the testis in the medaka fish (31), and the recently
discovered iDMY gene, which is the male sex-determining
factor during embryogenesis in the Eastern spiny lobster
Sagmariasus verreauxi (25). To reveal the genetic content of the
sex chromosomes, extensive karyotyping of different decapod
crustacean species has been performed and published. However,
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none of the available karyotypes can distinguish between the sex
and autosomal chromosomes (32–38). Moreover, while genome
sequencing using next generation techniques is common and
genomes have been published for several decapod species (39–
41), none, except that of M. rosenbergii (42), is a phased genome
in which a certain scaffold could be attributed to a paternal
or maternal origin. Therefore, verified sex-determining factors
in decapod species, especially those with WZ/ZZ chromosomal
content, are yet to be found.

For species in which sex is determined by sex chromosomes
(43), the sex differentiation process starts with the expression of
genes responsible for promoting masculinization or feminization
during early developmental periods. Many such invertebrate
genes have been well-studied, including the mab-3 gene in the
nematode Caenorhabditis elegans (44), the transformer-2 (tra-2)
gene in pancrustaceans (45), and the doublesex (dsx) gene in the
fruit fly Drosophila melanogaster, which has alternative spliced
variants yielding different sexes (46). Although the information
on such sex differentiating genes in crustaceans remains limited,
from the few studies that have been conducted, it is known that
dsx is expressed in the branchiopodDaphnia magna (47), and the
dsx and mab-3 related transcription factor (DMRT) is expressed
in the testis of the decapod Eriocheir sinensis, the Chinese mitten
crab (48). InM. rosenbergii, transcriptomic libraries obtained for
different developmental stages—from the embryonic stage (49),
through larvae and post-larvae, to adults (50, 51)—appear to
contain homolog transcripts of the dsx, tra-2, and DMRT genes.
Moreover, IAG silencing in M. rosenbergii resulted in significant
decrease in the expression of two DMRTs and other sex related
genes (52). However, the exact relationship of these genes to
the sex differentiation mechanism—if such a relationship does
indeed exist—has yet to be found.

Although in the next section we will describe the universal
IAG gene as a master switch involved in crustacean sex
differentiation, it is noteworthy that sex differentiation
mechanisms in crustaceans are not only mediated by genes
but also disrupted by external factors. For example, elevated
bacterial dosage of Wolbachia reduces the functionality of
insulin receptors in isopods which results in feminization
(53). Additionally, some environmental pollutants serve as
endocrine disrupting chemicals (EDCs) suggested to affect sex
differentiation and sexual development in crustaceans (54).
The latter concept was shown in various crustacean species
from different orders. In daphnids, the exposure to DES, a
synthetic estrogen, induced the development of secondary sexual
characters like larger abdominal process in females of D. magna,
while longer first antennae were observed in males exposed to the
androgen androstenedione (55). Moreover, in D. pulex, exposure
to methoprene, a juvenile hormone analog, yielded all-female
broods, while gravid females exposed to 20-hydroxyecdysone,
has resulted in all-male broods (56). In the amphipod Gammarus
pulex, exposure to the xenoestrogen 17α-ethynylestradiol
increased the females:males sex ratio (57) and in decapods, heavy
metals such as cadmium and copper inhibited ovarian growth
in the crabs Uca pugilator (58) and Chasmagnathus granulata
(59), while the xenoestrogen 4-nonylphenol reduced testis
weight in the crab Carcinus maenas (60). A correlation between

endocrine disruptors and crustacean sex differentiation is also
exemplified by EDCs discharge in polluted areas that increased
the frequency of intersexuality in harpacticoid copepods where
intersexuality is extremely rare (61), in amphipods (62) and in
decapods (63). These findings raised major concerns regarding
the impacts of pollutants on the reproductive success of many
crustacean species.

THE IAG-SWITCH–A MASTER SEX
CONTROLLING DEVICE IN CRUSTACEANS

As described above, in male crustaceans, the AG is a unique
endocrine organ, secreting the IAG hormone, which serves as
a master universal sex-differentiating switch abundant among
crustaceans, thus termed the “IAG-switch” (13). A scheme
describing the putative location of the IAG-switch from
genotypic determination to sexual maturation in gonochoristic
crustaceans is given in Figure 1. Residing within the eyestalk-
AG-testis endocrine axis (64), the IAG-switch is controlled by
upstream neuropeptides and interacts downstream with IAG
receptors and binding proteins (51, 65–68). The neuropeptides
that mediate growth and reproduction are produced in the X-
organ (located in the eyestalk) and later accumulated in the
adjacent sinus gland, from where they are secreted. It was
found that eyestalk ablation in males caused hypertrophy and
hyperplasia of the AG (64, 69) as well as over-expression of the
IAG hormone (70) and of a membrane-anchored AG-specific
factor (71). Therefore, it was suggested that some X-organ
derived neuropeptides are upstream controlling elements of AG
activity (64, 72, 73). Moreover, a reduction in the transcript levels
of gonad-inhibiting hormone (GIH), molt-inhibiting hormone
(MIH) and other eyestalk-derived neuropeptides (by using RNAi
knock down) significantly increased IAG expression. On the
basis of these findings, it was postulated that these neuropeptides
exert an upstream function that controls AG activity (i.e.,
IAG secretion) (73). It has also been suggested that female
molting factors, perceived by males via their short lateral
antennules (functioning as olfactory organs), also contribute to
the regulation of AG function and male gonadal maturation by
increasing IAG expression, thus implying that the IAG-switch is
also partially controlled by female reproductive activity (74).

Studying elements that are downstream to the AG within the
insulin-like signaling pathway revealed several insulin receptors
that interact with the IAG hormone. It was found that some
receptors were neither sex specific nor tissue specific, but
silencing their encoding genes resulted in AG hypertrophy
and over-expression of the IAG hormone (51). In contrast,
other receptors were male specific, and their knock down
led to the arrest of most of the germ cells in the testes at
the secondary spermatocyte stage (vs. those in the control
group, which developed into sperm cells) (68). A study of
the downstream signaling pathway of the IAG-switch also
revealed an insulin-like binding protein (ILBP) that interacted
with the IAG hormone, but whose expression was not AG
specific (65). This finding indicated that the protein was
perhaps synthesized in a location other than the AG, a
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FIGURE 1 | The IAG-switch in gonochoristic crustaceans. (A) Following male genotypic determination (ZZ/XY), the IAG-switch initiates the formation of the

IAG-secreting AG, leading to the development of a mature male. (B) Following female genotypic determination (WZ/XX), the IAG-switch inhibits the formation of the

IAG-secreting AG, leading to the development of a mature female. The period in which putative upstream IAG-switch controlling factors are expressed is denoted.

premise later supported by a study showing that eight ILBPs
characterized in a lobster were neither sex specific nor tissue
specific (66). Nevertheless, while some studies have demonstrated
that eyestalk-derived neuropeptides (e.g., GIH and MIH) are
upstream elements to the IAG-switch and insulin receptors
are downstream elements, to the best of our knowledge,
specific ILBPs associated with the IAG-switch are still to
be found.

The pivotal role of the IAG-switch in governing crustacean
sexual differentiation has been under study ever since the
discovery of the AG and is, in fact, best exemplified by functional
experiments that were performed long before the discovery of
the IAG. These studies are revisited here to exemplify the pivotal

role of the IAG-switch and its universality among crustacean
species (see also a summary of IAG-manipulation experiments
performed to date in Table 2).

From an historical point of view, the first researcher to
manipulate the IAG-switch, following the discovery of the
AG in crustaceans (1), was Charniaux-Cotton (2). In her
pioneering experiments on the amphipod O. gammarellus,
she demonstrated that implantation of the AG into females
induced the development of masculine characters and inhibited
vitellogenesis, whereas the implantation of testicular tissue had
no such effect (2, 3, 75). Later, studies on the terrestrial isopod
A. vulgare showed that AG implantation (76) or injection of
AG extract into females (5) induced partial masculinization,
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TABLE 2 | Summary of experiments that included IAG-switch based manipulations in crustaceans.

Species Order Method Results References

Orchestia gammarellus Amphipoda AG implantation in females Development of masculine characters and

vitellogenesis inhibition

(2, 75)

Armadillidium vulgare Isopoda AG implantation in females Transformation of gonads (76)

Armadillidium vulgare Isopoda Injection of AG extracts into immature females Transformation of gonads (5)

Carcinus maenus Decapoda AG implantation in females Development of male secondary characteristics (77)

Lysmata seticaudata Decapoda AG implantation in females Development of male secondary characteristics (78)

Pandalus borealis Decapoda AG implantation in females Development of male secondary characteristics (79)

Rhithropanopeus harrisii Decapoda AG implantation in females Development of male secondary characteristics (80)

Palaemon varians Decapoda AG implantation in females Development of male secondary characteristics (81, 82)

Macrobrachium rosenbergii Decapoda AG ablation in males Loss of masculine appendages and

transformation of gonads

(83)

Macrobrachium rosenbergii Decapoda AG implantation in females Development of masculine appendages and

transformation of gonads

(84)

Macrobrachium rosenbergii Decapoda AG implantation in females Full sex reversal of females to males (20)

Macrobrachium rosenbergii Decapoda AG ablation in males Full sex reversal of males to females (85)

Macrobrachium rosenbergii Decapoda IAG knock-down using RNAi in males Full sex reversal of males to females (86)

Macrobrachium rosenbergii Decapoda AG cells transplantation in females Full sex reversal of females to males (22, 42)

Procambarus clarkii Decapoda AG implantation in females Development of male secondary characteristics (87)

Procambarus clarkii Decapoda AG implantation in females Development of masculine characters and

inhibition of vitellogenesis

(88)

Eriocheir japonicus Decapoda AG implantation in females Development of masculine appendages (89)

Cherax destructor Decapoda Injection of AG extracts into females Development of male gonopores and inhibition

of vitellogenesis

(90)

Cherax quadricarinatus Decapoda AG implantation in females Development of masculine characters and

inhibition of vitellogenesis

(91)

Cherax quadricarinatus Decapoda AG ablation in male-intersexuals Loss of male secondary characteristics and

induction of vitellogenesis

(92)

Cherax quadricarinatus Decapoda AG ablation in male-intersexuals Loss of mating behavior with females and

fighting behavior with males

(93)

Cherax quadricarinatus Decapoda IAG knock-down using RNAi in

male-intersexuals

Vitellogenesis induction (94)

Scylla paramamosain Decapoda AG implantation in females Ovarian regression (95)

Eriocheir sinensis Decapoda Injection of AG extracts from S. paramamosain

and E. sinensis into females

Development of male gonopods (96)

Procambarus virginalis Decapoda AG implantation from P. clarkii Development of male secondary characteristics (97)

Litopenaeus vannamei Decapoda AG ablation in males Loss of masculine appendages and

degradation of spermatids in the gonads

(98)

Litopenaeus vannamei Decapoda AG implantation in females Partial development of male secondary

characteristics

(99)

including the transformation of female reproductive organs into
testes, sperm ducts and seminal vesicles.

Most IAG-switch manipulation experiments were performed
in decapod crustaceans, including shrimp, prawns, crayfish
and crabs (100). Among the earliest of such experiments in
decapods were those performed on hermaphrodite species
(100, 101); for example, AG implantation into females
of the simultaneous hermaphrodite, the Monaco shrimp
Lysmata seticaudata (78), and females of the sequential
protandric Northern shrimp Pandalus borealis (79) resulted
in the development of male secondary characteristics. In
gonochoristic species, AG implantation caused episodic

development of external male characteristics, as in the green
shore crab Carcinus maenus (77) and the Harris mud crab
Rhithropanopeus harrisii (80). In the Japanese mitten crab
E. japonicus, AG-implanted females developed masculine
appendages, even though all of them retained their oviducts
(89), but in the mud crab Scylla paramamosain, ovarian
regression occurred in female crabs implanted with AG
(95). IAG-switch manipulations in crabs also suggested
interspecies cross-activity of AG factors, as injection of an
AG extract from S. paramamosain or E. sinensis males into
E. sinensis females resulted in the development of male
gonopods (96).
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Many of the studies on the IAG-switch have been conducted in
different species of crayfish. In C. quadricarinatus, implantation
of hypertrophied AGs into females resulted in the development
of masculine secondary sex characters, such as the typical
red patch on the chela, and in a significant reduction in the
gonadosomatic index and impairment of vitellogenesis (91).
Particularly revealing studies were those conducted on intersex
C. quadricarinatus animals. In this species, some animals in the
population naturally exhibit intersexuality, in which individuals
function as males and exhibit male secondary characters,
but bear a mix of male and female gonopores and gonads
(active testes on one side and a pre-vitellogenic ovary on the
other) (102). In AG-ablated C. quadricarinatus intersexuals,
there was a partial shift toward femaleness in that external
male characters were not regenerated, but expression of the
vitellogenin gene was induced (92). Moreover, examination of the
agonistic and mating behavior of AG-ablated C. quadricarinatus
intersexuals revealed that these animals did not exhibit typical
mating behavior when exposed to females or the usual fighting
behavior when confronted with males (93). Knocking down the
IAG gene—by using RNAi through injection of dsCq-IAG—to
C. quadricarinatus intersexuals caused elevation of vitellogenin
expression to a level that did not differ from that in intact
vitellogenic females (94). In a related species, the common yabby,
C. destructor, a significant number of females (vs. a control
group) injected with AG extract developed male gonopores
at the base of the fifth pereiopod and showed inhibition of
vitellogenesis (90). In some early experiments carried out in
the red swamp crayfish Procambarus clarkii, implantation of
AGs into females led to partial masculinization, as shown
by the partial transformation of the first pair of pleopods
into typical male gonopods (87) and by the inhibition of
vitellogenesis in mature females (88). One of the most peculiar
IAG-switch-based manipulations was performed on a crayfish
species in which males do not exist—the marbled crayfish
P. virginalis. This parthenogenetic species, in which a virginal
form of reproduction gives rise to identical clones of all-
female progeny (103, 104), nonetheless expresses the IAG gene
(105). It was thus suggested that P. virginalis is a virginal
form that diverged from the gonochoristic slough crayfish
P. fallax (106), a premise supported by a report that both
species retain a highly similar sequence of the IAG gene (105).
Interestingly, implantation of P. virginalis females with AGs
from P. clarkii, a related species, resulted in the appearance
of masculine external characteristics, such as thickening of
the first and second pairs of pleopods and the formation of
reversed spines on the third and fourth pairs of pleopods
(97). The above findings indicate not only that cross-activity
of AG factors occurs between species, but surprisingly that in
crustacean species, even those in which males do not exist,
female animals are still susceptible to the effects of IAG-switch-
based manipulations.

Studies on IAG manipulation in species of Palaemonidae
have been reported from 1979/80 onwards. Among these,
transplantation of AG grafts induced the development of
external masculine characteristics in the common ditch shrimp

Palaemon varians (81, 82), and the first partial sex reversal using
IAG-switch manipulation that was undertaken inM. rosenbergii,
the most extensively studied palaemonid. In the latter study,
most andrectomized males did not regenerate the appendix
masculina (AM), and a reduction of spermatogenic lobules in
the testes was observed, while some AG-ablated males showed
the development of female gonopores and oviducts and even
the initiation of oogenesis (83). In a complementary study, it
was shown that AG-implanted females developed masculine
characters, including AMs and sperm ducts, and in some cases
spermatogenesis was initiated in the gonads (84). That study also
served to highlight the IAG-switch as a pivotal sex differentiating
mechanism in crustaceans, since females implanted with sperm
duct or testicular tissue were not masculinized, while ∼80% of
AG-implanted females showed some degree of masculinization
(84). In another important aquaculture species, the penaeid
Pacific white shrimp Litopenaeus vannamei, AG ablation of males
in various post-larval stages resulted in inferior development
of the AMs and degradation of the spermatids in the gonads
(98), while AG implanted females did not develop AMs and
only the minority developed male-like claspers on the first
endopods (99). However, we note that complete and functional
sex reversal in this important species has not yet been achieved,
despite the extensive attempts of various research groups around
the world.

While the above studies have indeed demonstrated the crucial
role of the IAG-switch in sexual differentiation in several orders
and many species in the Crustacea, all the above-described cases
of IAG-switch manipulations yielded various types of partial sex
shifts but not fully functional sex reversal of one sex into the
other. As shown in Figure 1, we assume that a putative decision
point exists, in which an individual commences toward sexual
maturation as a male or a female. It is hypothesized that IAG-
switch controlling factors are accommodating this decision point.
Functional experiments manipulating such factors will open a
new window into IAG-switch upstream controlling mechanism
andmight achieve a complete shift between sexes. In order to find
such IAG-switch controlling factors, advanced next generation
sequencing (NGS) techniques may be employed to sequence the
RNA of males and females at early developmental stages whose
investigation might yield sexually biased genes that putatively
control the IAG-switch. Those genes could be manipulated by
knockdown techniques such as RNAi (107) or Morpholino oligos
(108) and, if performed before the decision point, might lead to
a functional shift between sexes. However, timing the decision
point is species-specific and body size of the animal in such
early developmental stage might be very small which makes the
RNAi/Morpholino manipulation complicated. To overcome the
size obstacle, a whole genome sequencing of the animal using
latest NGS platforms could be used followed by CRISPR-Cas9
genome editing operations (109) that could be performed at
the embryonic level and guarantee that the manipulation occurs
before the decision point. To the best of our knowledge, CRISPR
editing of IAG-switch related factors was never performed. In the
next section, successful IAG-switch manipulation resulting with
full sex reversal will be described.
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IAG-SWITCH BASED BIOTECHNOLOGIES
FOR PRODUCING MONOSEX
POPULATIONS

The use of monosex populations is common in animal
husbandry, since in many species males and females yield
different agricultural products, particularly fish (110–112),
poultry (113–115), and mammals (116). In crustaceans, monosex
populations offer particular advantages in aquaculture (85, 117–
119), since most decapod species exhibit dimorphic growth
patterns, leading to variations in animal size at harvest. The
dimorphic growth patterns, in turn, could be a result of different
growth rates and behavioral patterns (120) and different food
conversion ratio (FCR) values between the sexes (121, 122),
or even cannibalism (96). Monosex populations of crustaceans
can also be exploited in ecological applications, e.g., monosex
prawn populations could be used as bio-control agents, serving as
predators of the snails that damage rice crops (123) and that are
vectors of parasites hazardous to humans (11, 124–127) and fish
(128). Here, we should remember that introducing new species
as bio-control agents into a given niche may result in devastating
consequences to the ecosystem (129), and therefore monosex
populations are preferable as biocontrol agents, since they are not
able to reproduce and thus become invasive species.

In the exploitation of monosex aquaculture for yield
improvement in crustacean species, the choice of sex will
generally be guided by the optimal growth rates and size at
harvest. Therefore, all-male aquaculture was proposed for species
exhibiting male superiority, as is the case for most crayfish (130–
132), lobsters (133), prawns (117, 120, 134) and crabs (135),
while all-female aquaculture was suggested for shrimp species
in which females are larger than males (118, 136). However,
growth rates and size are not the only considerations in the choice
of sex for monosex cultures; an additional consideration is the
desired product: For example, for the edible female gonads of
E. sinensis (137), the harvested animals would be vitellogenic
females with developed ovaries, even if their body size is smaller
thanmales. Additionally, even in some species in whichmales are
larger than females, such asM. rosenbergii prawns (85), monosex
female culture could improve the yield and profit in two possible
ways: intensification of stocking densities permitted by the lack of
aggressiveness of the females (138), and elimination of the need
for costly size-selective harvests by virtue of the size uniformity
of females (117, 139–141).

Traditionally, monosex aquaculture is achieved through
manual sorting (117, 142), which is both time consuming
and labor intensive and does not guarantee a 100% monosex
population. Agro-biotechnologies are thus needed to replace
this traditional method. To date, efforts to establish either all-
male or all-female populations, for both WZ/ZZ and XX/XY
sex heritability schemes, start with an initial sex reversal step
of male to a female or vice versa, based on manipulating the
IAG-switch during the sex differentiation process (see schemes
in Figure 2 which represent the methodology to achieve all-
male and all-female populations in both WZ/ZZ and XX/XY
systems). However, all the IAG-switch manipulations performed

to date have resulted only in partial sexual shifts, with the
exception of the fully functional sex reversal in the decapod
speciesM. rosenbergii (20, 22, 42, 85, 86). All-female progenies of
M. rosenbergii were achieved in the following way: Implantation
of AGs in juvenile WZ females resulted in sex reversal to WZ
“neo-males.” When these neo-males were crossed with normal
WZ females, a quarter of the progeny comprised viable WW
females. Crossing of the WW females with normal ZZ males
produced a monosex WZ female population (20) (Figure 3A).
In contrast, to produce a monosex ZZ male population, the first
step was AG ablation of juvenile ZZ males, which sex reversed
them into ZZ “neo-females.” Crossing these neo-females with
normal ZZ males produced a monosex ZZ male population
(85) (Figure 3B). Even though a single sex reversed animal
may yield several monosex progenies of thousands of prawns,
the complicated surgical procedure of AG ablation/implantation
resulted in high mortality and low rates of fully sex reversed
animals (20, 85), and the above sex reversal schemes were
therefore not suitable for scaling up toward commercialization.
The break-through was made with the development of the
first RNAi-based biotechnology for M. rosenbergii monosex
aquaculture, which relied on knock down of the IAG gene
through a single injection of dsMr-IAG into ZZ males at an
early post-larval stage. This biotechnology successfully enabled
mass production of ZZ neo-females and consequently of all-
male aquaculture (86) (Figure 3B). This procedure has been
commercialized and has already yielded several consecutive
generations of W-free ZZ prawns (143).

For generating all-female populations, the complicated
procedure of AG implantation into females was replaced with a
single injection of AG cell suspension intoWZ females at an early
post-larval stage; this yielded WZ neo-males and subsequently
WW females and all-female aquaculture (22) (Figure 3A). This
biotechnology was later improved by using the same procedure
of AG cell transplantation into WW females that were then sex
reversed into WW neo-males. Crossing of the WW neo-males
with WW females yielded all-female WW progenies, thereby
making the production of all-female producing females much
more efficient (42). We note that when this procedure was
performed repeatedly, it, too, yielded consecutive generations of
Z-free WW prawns (144).

The above studies on M. rosenbergii yielded both males
and females of every possible genotype (ZZ, WZ and WW).
This sexual plasticity further highlights the pivotal role of
the IAG-switch in crustacean sexual differentiation, since even
after the genotype is determined, manipulating the IAG-switch
may alter the initial direction of sexual development toward
maleness or femaleness, with a probable complete autosomal sex-
differentiation toolkit for each gender, regardless of the presence
or absence of either sex chromosome.

WHY INSULIN-LIKE?

The above review of the pivotal involvement of an ILP as
a major factor in crustacean sex differentiation demands a
broader evolutionary discussion of ILPs in the context of sex
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FIGURE 2 | Sex manipulation schemes for monosex populations: (A) all-male and (B) all-female in animals with the WZ/ZZ genotypic mode of inheritance; and

(C) all-female and (D) all-male in animals with XX/XY genotypic mode of inheritance.

FIGURE 3 | Successful sex manipulations in M. rosenbergii. (A) A WZ female implanted with an AG (20) or injected with an AG cell suspension (22) inverted into a WZ

“neo-male.” The progeny, when crossed with normal WZ females, yielded 25% of WW females. These WW females can be crossed with normal ZZ males to produce

all-female WZ populations, or they can be injected with an AG cell suspension (42) to produce WW neo-males that, when crossed with WW females, will give rise to

all-female WW populations. (B) ZZ males that are AG ablated (85) or injected with dsMr-IAG (86) inverted into ZZ “neo-females” that, when crossed with normal ZZ

males, give rise to all-male ZZ populations.

regulation and reproduction in the animal kingdom, in which
certain aspects of sexual differentiation are largely controlled by
vertebrate-like sex steroids rather than ILPs. Indeed, similar to

the IAG hormone, sex steroids (including androgens, estrogens
and progestogens) mediate sexual development, secondary
sex characters and dimorphic male/female physiological and
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behavioral patterns (145, 146) in most vertebrates, including
mammals, birds, reptiles, amphibians and fish (147). In
aquaculture, this role for sex steroids finds application in the
production ofmonosex fish populations by sex reversal of females
into males or vice versa through 17α-methyltestosterone or
estradiol-17β administration, as applicable (148–150).

An evolutionary survey of the animal kingdom reveals that
vertebrate-type sex steroids (mostly estrogen, androgen and
progestogen) and their related receptors and binding proteins are
also found in aquatic invertebrates, including different classes of
mollusks (151) [such as gastropods (152, 153), bivalves (154, 155),
and cephalopods (156–158)] and echinoderms (159) [such as
starfish (160) and sea urchins (161)]. Moreover, sex steroids are
also found in flatworms (162), annelids (163), crustaceans (164),
and cnidarians, such as corals (165). Their function in aquatic
invertebrates is believed to be associated with reproduction (but
not necessarily with sex differentiation) through the control of
the levels of noradrenaline and dopamine, gonadic serotonin and
catecholamine, and even cell metabolism and immunity (151).
Moreover, as is the case for vertebrates (166), in invertebrates
sex steroids are involved in growth processes. In crustaceans, and
other arthropods, such growth processes depend on a periodic
molt cycle in which the animal sheds its old extracellular cuticle
and forms a new, larger cuticle (167). In crustaceans, steroid
hormones (ecdysteroids) play a major role in molting and other
developmental processes that are regulated by neuropeptides,
such as MIH secreted from the Y-organ (168–170). Additionally,
in some crustaceans, reproduction is linked to a pre-mating
molt, which suggests some sort of coordination between molt-
controlling steroid agents and gonad maturation (171). However,
while the involvement of steroids in growth processes of
crustaceans and other arthropods is clear, their function in
controlling reproduction in crustaceans has been called into
question. Nevertheless, it has been reported that vertebrate-like
sex steroids could be involved in crustacean reproduction, as,
for example, administration of progesterone induced ovarian
maturation and spawning in the shrimpMetapenaeus ensis (172)
and vitellogenesis in the shrimp Penaeus japonicus (173), while
estradiol treatments promoted vitellogenesis in the crab Portunus
trituberculatus (174). In contrast, administration of testosterone
to femaleOcypoda platytarsis crabs resulted in masculinization of
the ovaries (175), and when administered to male Parapenaeopsis
hardwickii shrimp, it even caused hypertrophy and hyperplasia
of the AG (176). Moreover, administration of estradiol to entire
populations of the freshwater amphipod G. pulex and of the
decapod L. vannamei resulted in a clear female bias (57, 177).
However, to the best of our knowledge, there are no reports
of a fully functional sex reversal in crustaceans following the
administration of vertebrate-like sex steroids, which implies that
a different factor might be the main regulator in crustacean
sexual differentiation. As described above, it is likely that an
ILP, namely, the IAG hormone, is such a controlling element.
Nonetheless, questions regarding the evolvement of an insulin-
like factor, rather than a steroid, as the master sex controlling
switch in crustaceans, and possible interactions between ILPs and
steroids remain open.

As a step toward addressing these questions, let us examine
the insulin superfamily. This group of proteins includes ILPs
with a typical proteomic structure of B and A chains linked
by disulfide bonds (178). Peptides of the insulin family are
found in protozoans (179) and metazoans—both vertebrates and
invertebrates (180). ILPs were first discovered in mammals and
attracted extensive interest due to their involvement in many
physiological processes (181). In vertebrates, they comprise a set
of proteins including insulin, insulin-like growth factors (IGFs)
and relaxins, which are essential in reproduction, growth, and
developmental and metabolic pathways, such as carbohydrate
and lipid metabolism (182–185).

In invertebrates, the first ILP was found in the clam
Mya arenaria (186), and since then such proteins have been
found inmany species across different classes, includingmollusks
(187), annelids (188), flatworms (189), cnidarians (190), sponges
(191), nematodes (192) and arthropods (193). A regulatory
interaction between ILPs and steroids has indeed been found
in insects in which the prothoracicotropic hormone (PTTH), a
brain neuropeptide, controls the secretion of the ecdysteroids
that regulate molting (194). Bombyxin, such a PTTH found
in the silkworm Bombyx mori was found to be homologous
to insulin (195). In addition to its affect on growth (196)
and cell proliferation (197) in lepidopterans, bombyxin is also
involved in ovarian development in dipterans (198). ILPs are
also found in orthopterans, such as the migratory locust Locusta
migratoria, in which a single copy of an ILP is expressed as
two transcripts; one serving as a putative neurohormone is
expressed in the brain, and the other serving as a putative
growth factor is not tissue specific (199). In addition to their
structural resemblance at the protein level, the conservation of
invertebrate ILPs within vertebrates is best exemplified by the
fact that an insulin-like protein extracted from the common fruit
fly, D. melanogaster, showed cross reactivity between species by
initiating insulin bioactivity in mice (200), while mammalian
insulin was successful in activating D. melanogaster insulin
receptors (201). Moreover, injection of recombinant human
insulin into the shrimp L. vannamei led to increased levels of
glucose in the hemolymph and of glycogen in the gills, thus
suggesting that ILPs play a role in crustacean carbohydrate
metabolism (202). Crustaceans are also known to possess ILPs
that serve as growth factors (65) and some that regulate
glucose metabolism and participate in the immune response
against pathogens (203). However, while ILPs are generally
not regarded as sex specific, crustaceans constitute a unique
group in which a male-specific ILP (the IAG hormone) is
the master factor in regulating sexual differentiation (8). This
function of an ILP raises questions regarding the speciation
of insulins into a variety of different physiological pathways
during evolution, especially during the shift from invertebrates
to vertebrates. However, while crustacean ILPs and vertebrate-
like steroids share a physiological function as growth factors,
the evolutionary processes regarding the alteration of the major
sex differentiating mechanism from ILPs in early pancrustaceans
(i.e., the crustacean IAG-switch) to sex steroids in vertebrates are
still unknown.
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CONCLUSIONS

The process of crustacean sexual development from the
genotypic sex determination (WZ, ZZ, XX or XY), through the
sexual differentiation process, to the final masculine or feminine
maturation involves various sex controlling mechanisms that
include factors such as ILPs or steroids. The IAG-switch is a
unique crustacean endocrine-controlling mechanism involving
an ILP that regulates sexual differentiation and function
within the eyestalk-AG-testis endocrine axis. Despite earlier
determination of the sexual genotype, the switch can be
manipulated to induce either masculinization or feminization,
thereby revealing striking sexual plasticity in crustaceans. It
is this sexual plasticity that is often being exploited for sex
manipulations for the establishment of monosex populations.

During the evolution of ILPs in the animal kingdom,
numerous functions have evolved for such proteins in both
invertebrates and vertebrates. A unique ILP function that
evolved in the Crustacea is the IAG-switch mechanism, which

constitutes the pivotal element in the sex differentiation
processes. Nevertheless, to reveal the evolutionary pathways
of sex differentiating controllers, i.e., ILPs in crustaceans
and sex steroids in vertebrates, further evolutionary studies
focusing on sex differentiation during the evolution of
arthropods and the shift from invertebrates to vertebrates
are required.
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