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Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas 
invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable 
amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, 
crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax 
quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, 
amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite 
coexist in well-defined functional layers in close proximity within the mandible. The softer 
amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder 
and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. our 
findings suggest a unique case of convergent evolution, where similar functional challenges  
of mastication led to independent developments of structurally and mechanically similar, 
apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. 
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Teeth are exposed to considerable abrasion and mechanical 
stresses. The structure, mineralogy and composition of these 
mastication tools are intimately linked to feeding habits and 

are subject to evolutionary selective pressures. As a result, teeth are 
usually the hardest parts of the body, with superior wear-resistance 
and biomechanical toughness. Typically, a tooth can be divided into 
three structurally important components: a hard and wear-resist-
ant working part, a softer supporting ‘cushion’ that can withstand 
the impacting, compressive or tensile stresses and a hard–soft inter-
face that is usually mechanically graded to minimize interfacial 
stresses1–3. Diverse examples for the formation of this tri-element 
tooth structural approach are known. Among the mollusks, chitons 
(Polyplacophora) use iron oxide (magnetite)4,5 along with calcium 
phosphate mineral6 in their teeth while limpets (Gastropoda) form 
iron oxide (goethite) and silica-laden teeth7. The better-known cal-
cium phosphate (hydroxyapatite)-based mammalian teeth, where 
a hard enamel layer covers a softer bulk of dentin to form highly 
efficient cutting and grinding tools3 are of course a benchmark ref-
erence for teeth structure. Another interesting example are the self-
sharpening sea urchin (Echinoidea) teeth with grinding tips that are 
made of calcite reinforced with high content of magnesium ions, 
to a level close to dolomite8,9. Common to all these teeth types is 
the choice, or compositional modification of minerals for increased 
hardness of the working surface8 and the exquisite control of their 
location and ultrastructural organization. The latter is often char-
acterized by fibrillar or elongated needle structures oriented per-
pendicular to the load bearing direction. Various designs are also 
found in the interfaces between the hard cover and the underlying 
softer support layer. A well-known example is the mammalian den-
tin–enamel junction, a distinct layer that prevents crack propaga-
tion from enamel into dentin10,11. An interesting alternative to all 
these highly mineralized teeth are the sclerotized teeth of Polychaete 
worms, where the use of mineral (copper biominerals) is sparse12,13 
and non-mineralized zinc and copper serve to crosslink and harden 
a proteinaceous matrix rich in histidine13,14.

In the current study, we investigate the mandible of the arthropod 
Cherax quadricarinatus (freshwater crayfish). In crustaceans, the 
mandibles are part of the exoskeleton and are periodically removed 
and regenerated during each molting cycle that may occur every 
few days in early growth stages15. In contrast to mammalian bone 
and dentin, which are collagen-based tissues with embedded car-
bonated hydroxyapatite crystals, the exoskeletons of crustaceans are 
chitin-based and commonly reinforced with calcium carbonate16. 
The cuticle of C. quadricarinatus is known to contain amorphous 
calcium carbonate (ACC)15,17, which can be easily dissolved before 
the molting as compared with its crystalline polymorphs15,18. We 
found that the mandibles of the freshwater crayfish contain more 
than only ACC mineral. They are in part covered by a layer of flu-
orapatite (FAP) crystals, reminiscent of the hydroxyapatite-based 
enamel found in vertebrate teeth. We studied the crayfish mandibles 
on various length-scales and discovered that the complex functional 
tooth structure is quickly grown by carefully combining amorphous 
and crystalline minerals. The appearance of an enamel-like apatite 
layer and similarities in the investigated mechanical properties of 
the molar crayfish tooth and mammalian teeth suggest a unique 
case of convergent evolution. Similar functional challenges of need-
ing to grind food, led to remarkably similar solutions that appeared 
independently in genetically remote phyla: the vertebrates and this 
ancient group of arthropods19.

Results
Four different minerals found in the mandible. In crayfish, the 
mandibles form the anterior mouthparts, located directly in front 
of the oral opening (Fig. 1a). The mandibles consist of a large base, 
capped with two protuberances: the molar ridge, which serves as a 
massive grinding surface for mastication, and the incisor process, 

which serves for grabbing and holding food20 (Fig. 1b). The 
anterior molar ridge of C. quadricarinatus contains a large tooth 
that is distinct from the rest of the mandible in both colour and 
form (Fig. 1c). Raman spectroscopy (Fig. 1d) revealed that the 
mandible contains four different minerals: ACC and amorphous 
calcium phosphate (ACP) in the base of the mandible, calcite in the 
incisor and, most surprisingly, FAP in the anterior molar. Figure 
1e shows an X-ray tomography reconstruction of such a mandible. 
The significantly higher density of the molar (due to higher X-ray 
attenuation) corresponds to the bright appearance of the tissues 
observed in Fig. 1c.

The microstructure of the molar tooth. Phase contrast-enhanced 
synchrotron-based X-ray microtomography revealed the 3D inter-
nal microstructure of the molar (Fig. 2a), combining the effects of 
density variations with contrast arising because of the diffraction of 
X-rays at interfaces within the specimen21. A virtual slice through 
the tomogram of a water-immersed typical tooth (Fig. 2a) highlights 
two different zones, namely the apatite high-density mineral layer 
(light grey, to the right) and the base of the mandible (medium grey, 
centre), consisting of lower-density chitin and amorphous mineral. 
The outermost grinding surface is found on the right hand side 
of the image (delineated by the white–black line caused by X-ray 
interference effect). The apatite layer contains an array of parallel 
channels arranged normal to the outer surface, in a radial direc-
tion. These channels are similar and analogous to the crustacean 
cuticular pore canal system that is formed by cellular extensions of 
the epithelial cells22. The channels cross the cuticular ‘basal layer’, 
running through the amorphous mineral/chitin bulk, gradually 
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Figure 1 | Distribution of different minerals in the mandible. (a) schematic 
representation of the crayfish (C. quadricarinatus), red arrow indicating the 
position of the oral opening. (b) Ventral view of the mandible and the oral 
opening showing the basal segment (1), the anterior molar (2) and the 
outer incisor (3). scale bar, 5 mm. (c) Detailed view of an isolated mandible. 
The coloured points indicate positions where Raman spectra (shown in d) 
were measured. scale bar, 2 mm. (d) Chemical analysis of the mandible by 
Raman spectroscopy reveals the coexistence of amorphous carbonate and 
phosphate in the basal segment (blue, broadened peaks), apatite in the molar 
(red) and calcite in the incisor (green). The calcite is located beneath the 
brown chitinous cover of the incisor whereas the molar apatite is exposed. 
The main mode (ν1) of carbonate and phosphate are indicated. (e) micro-
CT image of the mandible showing higher density of the molar tooth due 
to increased attenuation (brighter regions) of the molar with respect to the 
basal segment and anterior incisor. The scale bar corresponds to 1 mm.
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thinning out towards the surface and finally terminating below the 
external tooth surface. Figure 2b is a low-vacuum environmental 
scanning electron micrograph depicting a diagonal polished section 
of the transition zone between the apatite (bright on the lower right 
side) and the amorphous mineral reinforced chitin (dark). This sec-
tion reveals typical details seen in cross-sectional slices at various 
depths beneath the outer surface. It is observed that the channels are 
situated about 6–8 µm apart, with the apatite mineralization begin-
ning sparsely as isolated islands appearing between canals (Fig. 2c). 
Closer to the outer surface, apatite replaces the amorphous carbon-
ate minerals in close proximity to the channels. The two mineral 
phases, the external apatite layer and internal chitin-amorphous 
mineral layer are interdigitated and form a convoluted interface. 
Conventional secondary electron scanning electron microscopy 
(SEM) of a fracture-surface (Fig. 2d) revealed elongated apatite 
crystals (typical size: 0.5 µm thickness ×3 µm length) oriented par-
allel to the pore canals direction. The ‘grainy’ matter seen surround-
ing the canals is presumably the amorphous mineral.

The distribution and orientation of mineral and chitin. A polished 
cross-section through a crayfish molar tooth (light micrograph Fig. 3a)  
was imaged by means of microbeam scanning wide-angle X-ray 
scattering (WAXS) measurements. The micro-diffractograms pro-
vided mineralogical identification, relative abundance and orienta-
tion information, presented for chitin (Fig. 3b), amorphous minerals  

(Fig. 3c) and apatite (Fig. 3d). Examples of typical diffraction pat-
terns are shown for the mandible base (Fig. 3e), the transition 
(Fig. 3f) and apatite zones (Fig. 3g) of the organ. The positions of 
the measurements are indicated by circles in Fig. 3b–d. These pat-
terns show a diffuse ring due to amorphous mineral, as well as chi-
tin and apatite diffraction arcs that were used to derive the pictures 
presented in Fig. 3b–d. The apatite crystals are roughly co-aligned 
with their c-axes orthogonal to the outer surface throughout the 
entire apatitic layer. Two chitin fibrous components are observed: 
fibres running parallel to the molar tooth surface in the deeper 
layer, corresponding to the known cuticle ‘twisted plywood’ struc-
ture23 (also delineated in Fig. 2b by dashed lines), and fibres pre-
ferentially oriented orthogonal to the surface24, running parallel to 
the channel radial direction in the region adjacent to the interface 
with the apatite (black lines in Fig. 3b showing the predominant  
chitin c-axis orientation changing close to the grinding surface). 
The amorphous mineral content increases towards the outer part of 
the tooth structure (Fig. 3c).

The distribution of carbonate and phosphate. The local chemi-
cal composition along the tooth section was studied by Raman 
spectroscopic imaging and the data are presented in Fig. 4  
(a second region is given in the Supplementary Fig. S1). The posi-
tion of the analysed region (light micrograph shown in Fig. 4a) 
with respect to the WAXS measurements is indicated by the black  
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Figure 2 | Microstructure of the anterior molar. (a) Virtual slice perpendicular to the tooth working-surface (situated on the right) in a 3D phase 
contrast-enhanced synchrotron X-ray microtomography image. The external apatite layer (light grey) contains a complex 3D network of pore canals that 
interface with the underlying chitin and amorphous mineral-based jaw (medium grey). The inset shows a magnification of the apatite layer and the rough 
interface region with finger-like extensions. scale bar, 100 µm. Inset scale bar, 20 µm. The spots and stripes in the dark-grey void on the left (beneath 
the inset, in the sample immersion liquid, with faint repeated patterns extending onto the mandible base) are ring artefacts, typical of high-resolution 
tomography. (b) sEm image (backscattered electrons) of a diagonal polished cross-section, showing the interface region between the apatite (bright) 
and the chitin tissue with amorphous mineral (dark grey). The white dotted lines indicate layers of a twisted plywood structure. scale bar, 20 µm. (c) A 
magnification of the pore canals. The scale bar equals 5 µm. (d) sEm image (secondary electrons) of a fracture surface of the apatite layer. Large crystals 
are aligned in the direction of the canals. scale bar, 2 µm.
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rectangle in the light micrograph in Fig. 3a. The images in Fig. 4b–d 
show the intensities of the phosphate band (Fig. 4b), the carbon-
ate-to-phosphate ratios (Fig. 4c) and the shifts of the centre-of-
mass of the phosphate peak (Fig. 4d). Phosphate is found within 
the entire measured region extending from the apatite layer deep 
into the amorphous mineral, with a strong gradient at the interface 
between the bulk of the molar and the outer apatite layer (Fig. 4b). 
The carbonate/phosphate ratio shows a pronounced gradient even 
within the amorphous mineral phase, far from the molar surface, 
with several fluctuations (Fig. 4c) that may reflect temporal physi-
ological variations at the time of deposition. The phosphate ν1 peaks 
around 950–965 cm − 1 consist of two, partially overlapping peaks, 
that is, a sharper peak at 965 cm − 1 of the FAP covering layer, and a 
broader peak centred at 951 cm − 1 of the underlying ACP rich layer. 
The shift in peak position is the outcome of a gradual increase in FAP 
near the transition zone, (Fig. 4a (sampling pts 2–5) and Fig. 4e).  
The abrupt transition seen in Fig. 4d marks the line where FAP 

abundance overrides ACP. Indeed, the shift to lower wavenumbers 
is associated with a broadening of the carbonate and phosphate ν1 
vibrational modes (as compared with calcite and FAP standards, 
Fig. 4e), and is characteristic of an amorphous, disordered mineral 
phase25,26. According to Fig. 4c, the carbonate content in the crystal-
line apatite is negligible but dominant in the underlying ACC/ACP 
layer, where both minerals coexist. Moreover, the position of the 
phosphate band in the Raman spectrum of the apatite region of 
the tooth corresponds to a band shift usually associated with high 
fluoridation of apatite27. High-resolution powder X-ray diffrac-
tion measurements (Supplementary Fig. S2) and Energy dispersive  
spectroscopy (EDS) analysis (Supplementary Table S1) further  
corroborate that the crayfish molar is covered by FAP.

The mechanical properties of the molar tooth. The mechani-
cal properties of a molar tooth cross-section (Fig. 5a) were 
tested by nanoindentation (Fig. 5b). We found that the hardness  
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Figure 3 | Spatial distribution and orientation of chitin and mineral. (a) Light micrograph of a cross-section of the molar tooth used for synchrotron 
scanning WAXs measurements (entire region) and Raman imaging (black rectangle, Fig. 4). scale bar, 200 µm. (b) Amount (colour code) and 
orientation (c axis, black lines) of chitin fibres. In the basal part, the layered plywood structure dominates, whereas, in the outer parts, the chitin fibres 
are predominantly oriented perpendicular to the tooth surface. (c) normalized scattering intensity (colour code) of the amorphous mineral phase 
(ACC + ACP) showing increased amount and contrast towards the interface with the apatite. (d) Amount (colour code) and orientation (crystallographic c 
axis, white lines) of FAP. These crystals are mainly oriented perpendicular to the surface. All 2D maps in b–d show normalized integrated intensities I/Imax 
(peak area) and orientations of WAXs peaks of the different phases. The dashed white lines trace the contour of the tooth. (e) Example for a diffraction 
pattern obtained in the mandible base (position indicated by a circle in b). (f) Typical diffraction pattern for the transition zone (position indicated in c). 
(g) Diffraction pattern for the apatite zone (position indicated in d). 
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systematically changes from 4.5–5 GPa in the outer apatite layer to 
about 1 GPa in the base of the mandible that consists of chitin and 
amorphous mineral. A typical scan is plotted in Fig. 5b (open tri-
angles), where a small gradient from about 1–2 GPa is seen in the 
base of the mandible reflecting the increase in amorphous mineral 
content, before the values sharply increase at the interface with the 
FAP layer. Hardness values in the FAP layer are significantly higher 
than what was previously reported for insect mandibles (3 GPa)28, 
although the hardness of the base of the mandible is in the range 
(although slightly larger) of what was found in the crushing part of the  
lobster claw (0.5 GPa)29. The observed hardness profile is also 
remarkably similar to that of mammalian teeth30, which consist 
of dentin, with a hardness of about 0.7 to 1 GPa (refs 30,31) and 
enamel, with reported hardness values ranging from 3–6 GPa, 
depending on the direction of the nanoindentation32 and position33 
in the tooth. The reduced moduli of the crayfish molar, evaluated 
from the unloading curves of the nanoindentation, follow the same 
trend as the hardness (Fig. 5b, full circles). The apatite layer is on 
average more than three times as stiff and four times as hard as the 
underlying composite of chitin and amorphous mineral (Table 1).

The nanoindentation measurements of the crayfish molar were 
performed on a dry sample and are therefore correlated to, but  
may not precisely reflect the properties of the teeth in their hydrated 
natural state29. However, the mechanical properties of mineral-
ized cuticle, and especially the densely mineralized crustaceans  
mouthparts are dominated by their constituent minerals and are 
therefore less susceptible to the effects of dehydration34,35. Hence 
our measurements are probably in fair agreement with their natural 
state.

Discussion
Our results show that the molar of C. quadricarinatus is a highly 
complex organ that possesses a range of interesting functional fea-
tures, including the three dental elements of hard cover, soft support, 
and graded interface between these layers. The observed similarities 
in hardness values between the crayfish molar and mammalian teeth 
exist despite the very different mineralogical composition of the sup-
porting material (chitin and amorphous minerals vs collagen and 
hydroxyapatite), the very remote taxonomic context and the differ-
ent diets processed by the two types of teeth. Most interestingly, the 
hard outer layer of the molar crayfish tooth is composed of highly 
crystalline FAP prisms, oriented normal to the surface, along the co-
oriented pore canals and parallel to the load direction. This struc-
tural solution for the formation of a hard, wear-resistant surface is 
remarkably similar to the solution evolved in vertebrates’ enamel, 
which consists of oriented bundles of elongated hydroyapatite crys-
tals. The concept of reinforcing the outermost layer of a tooth with 
oriented, elongated crystals is relatively widespread. Nevertheless, 
the different examples described in the introduction show that many 
invertebrates have evolved completely different solutions based on 
a variety of minerals and other components. Importantly, from an 
evolutionary perspective, the appearance of such highly crystalline 
apatite in crustacean teeth is unexpected. Apatite is commonly well 
documented in two evolutionary groups: the Chordate (vertebrates) 
and a small class of invertebrates from the brachiopods (Lingulata)36. 
The crustaceans, like most of the invertebrates use calcium carbonate  
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the phosphate peak shows a pronounced gradient with superimposed 
fluctuations. (d) The position of the ν1 phosphate peak shows a transition 
between the predominance of the crystalline (higher values) and the 
amorphous regions (lower values). The boundary between the apatite 
layer and the amorphous phases is indicated by the white dashed lines 
in b–d. (e) normalized single Raman spectra at positions 1, 2, 3, 4 and 5 
as indicated in a, compared with synthetic reference materials (FAP and 
calcite). The changes in the peak intensities show the gradual decrease/ 
increase in carbonate/phosphate amount. The broadening of the 
phosphate peak as well as the shift to lower wavenumbers, when  
passing from position 5 to position 3 across the sample, can be seen.
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Figure 5 | Nanoindentation of the anterior crayfish molar. (a) Light 
micrograph of the measured region on a cross-section. scale bar, 100 µm. 
(b) Hardness (open triangles) and reduced modulus (filled circles) for the 
dotted line in a. Both properties show an increase towards the apatite layer 
and much larger values within the FAP than in the chitin reinforced with 
amorphous mineral.

Table 1 | Nanoindentation of the molar tooth.

Material Hardness (GPa) Modulus (GPa) 

Fluorapatite 4.56 ± 0.80 80.8 ± 9.7
Chitin + amorphous mineral 1.00 ± 0.31 25.5 ± 5.3
Embedding material 0.30 ± 0.07 4.8 ± 1.5

Average values and standard deviations for the hardness and reduced modulus were calculated 
for the three different regions within the area shown in Fig. 5a.
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for exoskeleton reinforcement. A few exceptions of apatite forma-
tion in invertebrates were reported6,37. However, the apatite found in 
these invertebrates is nanocrystalline and is reminiscent of lamellar 
bone37. Remarkably, despite the great taxonomic distance, the cray-
fish molar apatite layer is composed of large apatite crystals, oriented 
parallel to the load direction, comparable in their mechanical per-
formance to vertebrates’ enamel30,32. The use of FAP in the crayfish 
molar as opposed to hydroxyapatite in mammalian teeth presumably 
is of advantage for the crustacean. FAP differs from hydroxyapatite 
only in the substitution of hydroxyl groups by fluorides38, yet has 
similar mechanical properties27. Fluoridation was previously also 
reported in the enameloid apatite of sharks39,40. Because of a lower 
water solubility41,42, the fluoridation of apatite presumably increases 
the durability of the teeth of C. quadricarinatus, which are mostly in 
contact with fresh water, rather than saliva as in mammals.

The hard crown is mounted on a softer base of parallel oriented 
lamellar chitin reinforced with ACC, the typical structure of the 
crustacean exoskeleton. ACC is widely used in crustacean cuticles, 
presumably because of its high solubility. This property facilitates 
the periodic dissolution of the mineral before each molting cycle15. 
Besides ACC, many crustaceans also use calcite to reinforce their 
exoskeletons. However, the coexistence of a crystalline apatite form-
ing the grinding surface with the underlying ACP-/ACC- graded 
interphase layer is reported here for the first time. Between the crys-
talline fluoroapatite crown and the soft ACC support, the mineral 
composition continuously transforms from ACP to ACC. The com-
position gradient is related directly to the variations in mechanical 
properties forming a unique type of graded interface. The combined 
structure of apatite and ACC is a physiological cost-effective solu-
tion where the metabolically ‘expensive’ and less resorbable phos-
phate is restricted to the outer surface whereas the resorbable ‘com-
mon’ carbonate is used for the bulk of the mandible and the cuticle.

In conclusion, the molar of C. quadricarinatus is a highly com-
plex, periodically renewable organ in which a unique architecture 
of amorphous and crystalline calcium carbonate and phosphate 
minerals constitutes a tooth with mechanical properties comparable 
to mammalian teeth. This is achieved by including gradients in the 
chemical composition and microstructure combining a highly crys-
talline apatite cap, reminiscent of enamel, covering a chitin scaffold 
reinforced with amorphous mineral. The similarities in their proper-
ties and underlying structural principles make the crayfish molar and 
mammalian teeth an interesting example of convergent evolution 
of a functional tooth structure based on hypermineralized enamel, 
which has been described as a ‘masterpiece of bioceramics’43.

Methods
Animals. C. quadricarinatus crayfish were reared in artificial ponds at Ben-Gurion 
University, Beer-Sheva, Israel. The animals were anaesthetized in ice-cold water 
before dissection. Mature teeth were extracted from specimens at an inter-molt 
stage. SEM experiments were carried out with these as well as with exuvia samples. 
Ben-Gurion University Ethics Committee has exempted experiments with crusta-
ceans from specific permit requirements

Sample embedding and polishing. Mandibles were kept frozen except during 
preparation to suppress any possible crystallization of amorphous minerals. Man-
dibles were embedded in Epofix cold-setting resin with a resin/hardener mixing 
ratio (w/w) of 25/3, and then sectioned with a slow diamond saw (BUEHLER Iso-
mat, Germany) using petroleum distillate (BUEHLER Isocut fluid) as cooling fluid, 
because ACC is highly water soluble. Mandible sections were further polished 
using ethyleneglycol lubricant to reduce thickness and provide a flat surface for 
Raman imaging and Nanoindentation measurements.

Raman spectroscopy and imaging. Raman spectra reported in Fig. 1d were 
acquired on a Jobin-Yvon LabRam HR 800 micro-Raman system equipped with a 
liquid nitrogen cooled detector. A He–Ne laser source (633 nm), a ×50 microscope 
objective, a 100-µm confocal aperture and a 600-mm − 1 grating were used, giving a 
resolution of 2–4 cm − 1.

For Raman spectroscopic imaging, a confocal Raman microscope (CRM200, 
WITec, Ulm, Germany) equipped with a piezo-scanner was used (P-500, Physik 

Instrumente, Karlsruhe, Germany) with a ×60 (0.8 NA) objective and a diode-
pumped 785-nm near-infrared laser (Toptica Photonics AG, Graefelfing, Germany, 
laser power 10 mW). The surface was scanned using 500 nm steps, and full 
spectra for each pixel were acquired (0.1 s integration time) with a thermoelectri-
cally cooled CCD detector (DU401A-BV, Andor, UK) placed behind a grating 
(300 mm − 1) spectrograph (Acton, Princeton Instruments, Trenton, NJ, USA) 
with a spectral resolution of ~6 cm − 1. For spectra in Fig. 4e, 1,200 mm − 1 grating 
(UHTS 300, WITec, spectral resolution ~2 cm − 1) and 5 s integration times were 
used. Laser power (10 mW full beam power at the sample) was adjusted to attain 
a sufficient signal-to-noise ratio and to avoid sample damage. The ScanCtrlSpec-
troscopyPlus software (version 1.38, WITec) was used for measurements and 
WITec Project Plus (version 2.02, WITec) for spectra processing. The phosphate 
and carbonate images were generated by integrating the intensity of the signal for 
the wavenumber ranges of phosphate (920–990 cm − 1) and carbonate (1040–
1125 cm − 1). The phosphate band position reported in Fig. 4d was obtained using 
a centre-of-mass filter to calculate the intensity-weighted spectral position of the 
920–990 cm − 1 wavenumber range.

Micro-tomography. Molar-containing segments of the mandible were imaged 
using two microtomogaphy instruments: (a) a laboratory instrument (Skyscan 
1072, Skyscan, Kontich, Belgium) operated at 100 keV and magnified to obtain a 
resolution of 6.5 µm (Fig. 1e). Data were reconstructed using the standard Nrecon 
reconstruction package (Skyscan) and the reconstructed volumes were visualized 
or virtually sliced to reveal the internal microstructure (Amira 5.2, Visage Imaging 
GmbH, Germany). (b) The high-resolution microtomography set-up of the BAM-
line at BESSY-II storage ring (Helmholtz-Zentrum Berlin, Germany), operated 
as described elsewhere44 (Fig. 2a). For our samples, we used an energy of 30 keV 
and 1,200 projections were obtained spanning 180° around the rotation axis. An 
effective pixel size of 2.2 µm was used, and the detector system was positioned 
150 mm behind the sample. The tomographic datasets were reconstructed using 
the European Synchrotron Radiation Facility program PyHST45 and visualized as 
mentioned in (a) above.

Scanning electron microscopy. Dried molar teeth were fractured perpendicular 
to the molar surface, sputter-coated with gold and examined using a JEOL JSM-
7400f electron microscope. Slices and polished samples were imaged uncoated in 
an FEI Quanta 600 using the low-vacuum mode of imaging by the large field gase-
ous secondary electrons detector, with an acceleration voltage of 2–4 kV.

Microbeam WAXS. Scanning WAXS measurements were performed at the  
µ-Spot beamline46 (BESSY II storage ring, Helmholtz-Zentrum Berlin). Embed-
ded cross-sections of the molar tooth were scanned with a step size of 50 µm 
using an energy of 15 keV, while collecting two-dimensional diffraction patterns. 
The local amount of chitin, amorphous mineral and apatite, visualized in the 
images in Fig. 3b–d, show the integrated intensities of the isolated orthogonal 
WAXS peaks of the respective phases of chitin and apatite, and of the diffuse 
scattering halo for the amorphous phase, in a pseudocolour. These maps provide 
direct visualization of the spatial distribution of these phases47. The orienta-
tion representation of the c-axes of apatite and chitin were obtained from the 
azimuthal maxima of the apatite (002), and chitin (013) reflection (see ref. 23) 
in the 2D diffraction patterns. These maxima allow us to determine the planes 
in which the crystallographic c-axes and the related morphological orientations 
lie. For apatite, the orientation of the c-axis shows the preferred alignment of the 
crystals. For chitin, it corresponds to the fibre’s orientation. As two chitin fibre 
orientations within the volume were observed, only the one corresponding to 
the highest peak was used in the present evaluation and was attributed to the 
predominant local fibre orientation.

Nanoindentation. Nanoindentation was carried out in ambient conditions using 
an Ubi nanoindentation instrument (Hysitron) with a Berkovich diamond tip. 
To obtain hardness and reduced modulus, all load–displacement curves were 
analysed, using the method described by Oliver and Pharr48. 550 indentations were 
performed using a maximal load of 5,000 µN across the polished surface. A dwell 
time of 60 s was applied at peak load to take creep behaviour into account. Rela-
tively large lateral steps of 10 µm between each indentation were used. Thus, plasti-
cally deformed zones from previous indentations did not affect our measurements. 
The effect of topography was minimized by finely polishing the sample surface (see 
sample embedding and polishing). 
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