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a b s t r a c t 

Epidemic spread in single-host systems strongly depends on the population’s transmission network. How- 

ever, little is known regarding the spread of epidemics across networks representing populations of 

multiple hosts. We explored cross-species transmission in a multilayer network where layers represent 

populations of two distinct hosts, and disease can spread across intralayer (within-host) and interlayer 

(between-host) edges. We developed an analytic framework for the SIR epidemic model to examine the 

effect of (i) source of infection and (ii) between-host asymmetry in infection probabilities, on disease risk. 

We measured risk as outbreak probability and outbreak size in a focal host, represented by one network 

layer. Numeric simulations were used to validate the analytic formulations. We found that outbreak prob- 

ability is determined by a complex interaction between source of infection and between-host infection 

probabilities, whereas outbreak size is mainly affected by the non-focal host to focal host infection prob- 

ability. Hence, inter-specific asymmetry in infection probabilities shapes disease dynamics in multihost 

networks. These results highlight the importance of considering multiple measures of disease risk and 

advance our understanding of disease spread in multihost systems. The study provides a flexible way to 

model disease dynamics in multiple hosts while considering contact heterogeneity within and between 

species. We strongly encourage empirical studies that include information on both cross-species infection 

rates and network structure of multiple hosts. Such studies are necessary to corroborate our theoretical 

results and to improve our understanding of multihost epidemiology. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Understanding the transmission of disease among multiple

osts is a major endeavor of disease ecology because it provides

nsights into the possible impact of cross-species transmission on

griculture (e.g., transmission between wildlife and domestic an-

mals), persistence of wild populations, and species conservation

ffort s ( Böhm et al., 2009; Fenton and Pedersen, 2005; Lang-

ig et al., 2012; Tompkins et al., 2003 ). For example, white-nose

yndrome, induced by the fungus Pseudogymnoascus destructans ,

hich invaded North America from Europe, is causing major de-

lines in bat populations of several species ( Blehert et al., 2009;

angwig et al., 2012 ). From a public health perspective, under-

tanding cross-species transmission helps us understand the risk

f zoonotic diseases ( Daszak, 20 0 0; Wolfe et al., 20 07 ), with no-
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able examples such as avian influenza and Ebola ( Gire et al., 2014;

ang and Eaton, 2007 ). 

Mathematical models of disease transmission across multiple

osts are typically mean-field models, which assume homogeneity

n contacts within and between species ( Craft and Caillaud, 2011;

enton and Pedersen, 2005; Keesing et al., 2006 ). By contrast,

etwork models consider heterogeneities in the contact structure

 Bansal et al., 2007; Craft and Caillaud, 2011; Keeling and Eames,

005 ) or other meaningful proxy for transmission (e.g., parasite

haring Pilosof et al., 2015; VanderWaal et al., 2013; 2014 ). This is

mportant because heterogeneity in contacts can capture much of

he variation in pathogen transmission ( Craft and Caillaud, 2011;

astor-Satorras et al., 2015 ). However, network models commonly

epresent a population of a single host species. Two main reasons

an explain the paucity of multihost studies within a network anal-

sis framework: (i) obtaining data on the contact networks within

ach species as well as data on interspecific contacts is extremely

esource-intensive (Perkins et al., 2009) ; and, (ii) ‘classic’ network

odels are not adequate for modeling between-species contact

eterogeneity because they contain a single network, representing

http://dx.doi.org/10.1016/j.jtbi.2017.07.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.07.020&domain=pdf
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Fig. 1. A multilayer interconnected network between hosts A (left side) and B (right 

side). Intralayer edges (in black) represent contacts between individuals of the same 

host species. Interlayer edges (in orange) represent contacts between individuals of 

different host species. Infection probabilities between hosts A and B ( βAB and βBA ) 

may be asymmetric (represented by different width of orange arrows). Individuals 

can be susceptible (black nodes), infected (red nodes) or recovered (blue nodes). 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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a population of a single host species, disconnected from networks

of other hosts. In this paper we address this second limitation. 

One way to model disease spread across several hosts is with

multilayer networks in which different layers can represent differ-

ent host species. In particular, interconnected networks (as defined

by Kivelä et al., 2014 ) are a useful representation because they con-

tain two types of edges: intralayer edges connect individuals from

the same population, while interlayer edges connect individuals

from different populations ( Fig. 1 ). Disease transmission in inter-

connected networks has been explored in the field of physics, and

driven by human-related examples (reviewed in Boccaletti et al.,

2014; Kivelä et al., 2014; Salehi et al., 2015 ). The main focus of

these studies has been on modeling the conditions necessary for a

disease to emerge (i.e., cross the R 0 = 1 threshold). Such conditions

include the distributions of intralayer vs. interlayer edges in the

network, which can create regimes whereby a disease spreads in

one network but not in another (Dickison et al., 2012) . For exam-

ple, Saumell-Mendiola et al. (2012) have shown that when the cor-

relation between the intralayer and interlayer degree distributions

is strong, an outbreak may occur in the system even if it would not

have occurred in any of the single layers alone. By contrast, in this

paper we model disease transmission in interconnected multihost

networks in a regime where the disease has already emerged (i.e.,

R 0 > 1) in order to study the outcomes of such epidemics. 

We adopt an ecological point of view according to which an iso-

lated network represents a population of a particular host species

while an interconnected network represents a multihost system

composed of populations of distinct host species ( Fig. 1 ). For exam-

ple, the transmission of bovine tuberculosis from badgers to cows

may depend on the network structure of both species Böhm et al.

(2009) . This view is both realistic and necessary because (i) in mul-

tihost systems one host can alter the dynamics of pathogens in

other hosts ( Dobson, 2004; Fenton and Pedersen, 2005; Holt et al.,

20 03; Keesing et al., 20 06 ) and (ii) these dynamics can be affected

by the underlying network structure of each host Craft and Cail-

laud (2011) . 

In disease ecology, some multihost pathogen transmission mod-

els focus on the case in which a target species is infected by a

source species ( Fenton and Pedersen, 2005; Viana et al., 2014 ). In

these models, little or no transmission from the target back to the

source is assumed ( Dobson, 2004; Viana et al., 2014 ). Other mod-

els deal with diseases that can be transmitted and maintained by

more than one species (e.g., bovine tuberculosis or canine distem-

per virus). In this case, the dynamics of disease in the host of inter-
st, which we term the focal host , may be affected by two factors

nherent to multihost systems: (i) the source of infection — if the

isease originates in the focal host itself or in a non-focal host;

nd (ii) the asymmetry in the rate of transmission between the

wo hosts. Both of these factors are of crucial importance for cross-

pecies pathogen transmission ( Craft et al., 2008; Dobson, 2004;

enton and Pedersen, 2005 ). For example, recurrent infections from

 non-focal host can cause endemic infection in a focal host even

f the pathogen cannot establish in it (Fenton and Pedersen, 2005) .

dditionally, in zoonotic diseases the source of infection is the an-

mal, rather than the human, causing strong asymmetry in infec-

ion dynamics; that is, probability of infection is higher from an

nimal species to humans than the other way around ( Chapman

t al., 2005; Wolfe et al., 2007 ). 

Our goal is to understand how the interaction between these

wo factors affects disease dynamics in an interconnected network

ystem. We quantify dynamics using two measures: (i) The prob-

bility of an outbreak, meaning the probability that a significant

ortion of the population is infected (see below); and (ii) the ex-

ected size of an outbreak (i.e., the proportion of the population

nfected), when an outbreak occurs. We develop an analytic frame-

ork to quantify outbreak size and probability in interconnected

etworks with asymmetric infection rates between the networks,

n order to gain insights into multihost disease dynamics. 

. Modeling pathogen spread in interconnected networks 

Following previous studies on interconnected networks

 Dickison et al., 2012; Saumell-Mendiola et al., 2012; Wang

t al., 2013 ), we use interconnected networks as depicted in Fig. 1 .

e refer to each of the single networks in an interconnected

etwork as layers (Kivelä et al., 2014) . Intralayer edges connect

odes within a layer while interlayer edges connect nodes from

ifferent layers. For simplicity, we considered the case of two

nterconnected populations (belonging to different hosts). We

xplore disease dynamics in layer A ( L A ) of the interconnected

etwork and thus consider L A as our focal host species and layer B

 L B ) as the non-focal species ( Fig. 1 ). We define the mean number of

nterlayer edges connected to a node (or ‘mean interlayer degree’)

n L A as e A = 

E 
n A 

, where E is the number of interlayer edges and

 A is the number of nodes in L A . The mean interlayer degree in L B 
s analogously defined as e B = 

E 
n B 

. 

We note that the networks we use are inherently different from

odels of disease spread in metapopulations, where the connec-

ion between populations is quantified via dispersal of individu-

ls (Colizza and Vespignani, 2008) or from studies of interconnect

ransportation systems (Balcan et al., 2009) . Instead, we focus on

odeling epidemic spread in scenarios more relevant to multihost

pidemics, where disease transmission occurs via contact or vec-

or, and transmission is often asymmetrical. For example, the Ebola

irus can be transmitted between groups of primates from differ-

nt species (Walsh et al., 2007) . 

We study the spread of a pathogen in interconnected networks

ith an SIR model, in which each individual belongs to one of

hree compartments: susceptible (S), infected and thus infectious

I) or resistant and not infectious (R). It is advantageous to work

ith the SIR model because it is relevant for a vast range of dis-

ases and because it is well established in the network epidemi-

logy literature (Pastor-Satorras et al., 2015) , providing us with a

ound theoretical basis to build upon. 

Following Begon et al. (2002) , we denote the probability that a

ontact between an infectious and a susceptible individual leads to

uccessful transmission of infection in a given time interval as β
this is the equivalent of ν from Begon et al., 2002 ). We hereafter

efer to this parameter as infection probability . Because nodes in

ifferent layers belong to different species, the probability that a
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usceptible individual will be infected by an infectious neighbor is

etermined by the species identity of both. Hence, β depends on

he layers to which the two nodes belong (Dobson, 2004) . We thus

efined the infection matrix 

= 

[
βAA βAB 

βBA βBB 

]
(1) 

For example, βAB is the probability that a node in L A will be

nfected by a node from L B . Individuals transition from an infected

tate to a recovered state after a given amount of time (the infec-

ious period, τ ), and the recovery rate is therefore γ = 

1 
τ (sensu

eeling and Rohani, 2008 ). 

We use the SIR model to examine two infection scenarios. In

cenario 1 the epidemic originates with an individual in L A (the fo-

al host) whereas in Scenario 2 it originates with an individual in

 B (the non-focal host). In both scenarios we track only the popu-

ation of the focal host. 

. Analytic formulation of outbreak size and probability 

The SIR spreading process on a network can be analytically

tudied by equating it with a bond percolation process ( Keeling

nd Eames, 20 05; Newman, 20 02b ). The bond percolation prob-

em concerns diffusion through a discrete substrate to form clus-

ers. In monolayer (non-interconnected) networks, the probability

f a large outbreak and the expected size of such an outbreak in

rbitrary random networks (random networks with any degree dis-

ribution) has been described by Newman (2002a) . A percolation

rocess on a network may be subcritical, in which case the diffu-

ion is confined to a small number of nodes; Alternatively, it can

e supercritical, in which case a giant component emerges and the

iffusion process may cover a significant portion of the network.

n outbreak can occur only when the system is in the supercrit-

cal phase; in epidemiological terms, this means that the disease

rosses the R 0 = 1 threshold. Because we are interested in those

ettings where an epidemic may potentially have serious conse-

uences for populations, we focus on scenarios in the supercritical

hase. 

The transmissibility of the pathogen via a given edge depends

n both the infection probability and the recovery rate and is

 = 1 − (1 − β) 
1 
γ (Newman, 2002b) . This property is a measure of

he likelihood that the disease will be transmitted via a given edge

f one of the nodes adjacent to it is infected. Transmissibility allows

valuating the size of an outbreak, if one occurs, by estimating the

xpected size of the giant component (i.e., the expected fraction

f the network occupied by the giant component) in the perco-

ation process on the network ( Newman, 20 02a; 20 02b ); that is,

fter keeping only a fraction of the original edges in the network

long which the disease may be transmitted. For a large random

etwork with an arbitrary degree distribution, both the size of the

iant component, S , and the mean size of the non-giant compo-

ents, s , can be calculated using percolation theory (see Appendix

). The size of the giant component corresponds to the size of an

utbreak, since it is composed of exactly those nodes that will be

nfected if the epidemic originates in any node in the giant com-

onent. The probability that an epidemic starting in a random in-

ividual will result in an outbreak, P , is the same as the probability

f belonging to the giant component, and thus in monolayer net-

orks P = S ( Newman, 2002a; 2002b ). 

Applying percolation theory to interconnected networks is

ot straightforward, particularly when the infection probability is

symmetric ( βAB � = βBA ). While the percolation process can de-

cribe the SIR dynamics in each of the layers separately (as for

onolayer networks), the pathogen spreads across the interlayer

dges with different probabilities in each direction. Therefore,

here is no single transmissibility value for the interlayer edges,
nd the problem of finding the outbreak probability and size can-

ot be formulated as a simple percolation process. To provide ap-

roximation for outbreak size and probability in interconnected

etworks, we start by considering the percolation processes in

ach layer independently, as if they were disconnected. We then

dd the effect of the other layer for increasing the probability and

ize of outbreaks. 

We assume (Assumption 1) that an outbreak in one layer will

nevitably lead to an outbreak in the second layer. This is be-

ause the layers are sufficiently connected and outbreaks within

ayers are sufficiently large (when they occur), such that at least

ne interlayer edge will transmit the disease to the giant compo-

ent in the other layer. Next, we consider the nature of the mul-

ihost setting. First, due to behavioral and life history differences

etween species, within-host contact rates are usually greater than

etween-host contact rates. Hence, there are less interlayer con-

acts than intralayer contacts per individual. Second, once two in-

ividuals come in contact, within-host infection probabilities are

arger than between-host infection probabilities, for instance due

o physiological competence between the host and the pathogen.

his is a common assumption in virtually all multihost transmis-

ion models in disease ecology ( Fenton and Pedersen, 2005; Holt

t al., 2003; Poulin, 2007 ). It follows that interlayer transmission

ates are lower than intralayer transmission rates. We combine

hese two assertions — low interlayer connectivity and low inter-

ayer transmission rates — to a second assumption (Assumption 2),

ccording to which each of the non-giant components formed by

he bond percolation process is expected to transmit or receive the

isease through at most one edge. That is, although it is permis-

ible for non-giant components to have more than one interlayer

dges connecting them, non-giant components cannot have more

han one transmitting interlayer edge. 

.1. Probability of outbreak in interconnected networks 

We wish to find the analytic solution to P A — the probabil-

ty of an outbreak in layer L A . The probability of an outbreak in

ach of the layers if the interlayer edges are epidemiologically

isconnected (i.e., βAB = 0 and βBA = 0 ) is the same as the size

f the giant component in the percolation process in these lay-

rs; we denote these sizes as S A and S B . We further denote s A 
nd s B as the mean number of nodes in the non-giant compo-

ents in layers A and B , respectively, when the layers are dis-

onnected. All these sizes — S A , S B , s A , s B — are functions of the

ntralayer infection probabilities ( βAA or βBB ), the recovery rates

 γ A or γ B ), and the relevant intralayer degree distribution (see

ppendix A). Note that S A and S B are measured as a fraction of

he network size, while s A and s B are measured in absolute num-

er of nodes, rather than in fractions. When the layers are con-

ected, the transmissibility of the pathogen from L A to L B via the

nterlayer edges is T AB = 1 − (1 − βAB ) 
1 
γA , where γ A is the recovery

ate of the host in L A . This gives the probability that the pathogen

preads from an infected individual in L A to a connected individual

n L B through a given interlayer edge. T BA is analogously defined as

 BA = 1 − (1 − βBA ) 
1 
γB . 

In Scenario 1, an outbreak may occur as a result of intralayer

ransmissions within L A if the node of origin belongs to the giant

omponent. Alternatively, if the node of origin is not in the giant

omponent, an epidemic may occur as a result of transmission to

 B causing an outbreak there which is then transmitted back to L A .

his will occur if (i) the non-giant component in which the dis-

ase originated is connected to L B via an interlayer edge (with ex-

ected value e A s A ); (ii) the interlayer edge transmits the disease to

 B (with probability T AB ); (iii) the node to which the pathogen is

ransmitted is in the giant component in L (with probability S ).
B B 
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Therefore, in Scenario 1 

P A = S A + (1 − S A ) S B e A s A T AB (2)

The first term in the equation refers to the case in which dis-

ease originates in the giant component whereas the second term

refers to the concurrence of the three conditions mentioned, in the

case where the disease originates in the non-giant component. We

see that the probability of an outbreak depends only on the inter-

layer edge transmissibility in the direction L A → L B . This is so be-

cause the infection in the other direction will occur if there is an

outbreak in L B , regardless of the transmissibility of the epidemic in

the direction L B → L A (due to Assumption 1). 

In scenario 2, the disease originates in L B and the logic is anal-

ogous. An outbreak will occur in L A if an outbreak occurs in L B .

Alternatively, if an outbreak does not occur in L B , but (i) the non-

giant component infected in L B is connected with an interlayer

edge (with expected value e B s B ), (ii) this connecting edge trans-

mits the epidemic (with probability T BA ), and (iii) the infection in

L A results in an outbreak (with probability S A ). The probability of

an outbreak in this scenario is therefore: 

P A = S B + (1 − S B ) S A e B s B T BA . (3)

3.2. Outbreak size in interconnected networks 

While in monolayer networks the size and probability of an

outbreak are the same ( S = P ), this is not the case in intercon-

nected networks, as we show below. In scenario 1, the size of an

outbreak in L A , which we denote as R A ∞ 

, is augmented by the pos-

sible infection of the non-giant components in the percolation pro-

cess on that layer. Since we assume an outbreak occurs in L A , an

outbreak must occur in L B as well. The giant-component in L B may

be connected via interlayer edges to non-giant component in L A 
which may now become infected. The number of interlayer edges

connected to the giant component in L B is S B e B n B , of which a frac-

tion of 1 − S A are connected to non-giant components in L A . Each

such infection in L A increases the size of the outbreak by 
s A 
n A 

(due

to Assumption 2). Therefore, 

R 

A 
∞ 

= S A + S B (1 − S A ) s A e B 
n B 

n A 

T BA = S A + S B (1 − S A ) s A e A T BA . (4)

Notice that Eq. (4) is different from both Eqs. (2) and (3) in that

only transmission in the direction L B → L A plays a role. 

For scenario 2 the formulation is similar. Since we assume that

an outbreak occurs in L A , it is of no significance to the outbreak

size where the epidemic originated, since an outbreak must oc-

cur in L B . Therefore, L B augments the outbreak in L A in a similar

manner as for Scenario 1, and Eq. (4) holds in this case as well.

Therefore (and in contrast to the probability of an epidemic), only

transmission rates in the direction L B → L A affect outbreak size, re-

gardless of the source of the epidemic. 

4. Numeric simulations of the spreading process 

To test the analytic solutions, we compared them with numeric

simulations. We used the Erd ̋os–Rényi (ER) model as it is com-

monly considered as a ‘null’ network structure and because for

the purpose of theoretical work, which aims to provide a general

framework to generate predictions, the use of well-defined net-

work models is advantageous (Newman, 2003) . We find explicit

solutions for the ER model (see Appendix A for derivation of S and

s for ER networks), and compare them to simulation results. Nat-

ural animal or human networks do not necessarily fit into prede-

fined network structures. Because our analytic framework is based

on a derivation for random networks with any degree distribution

(Newman, 2002b) , it can be used to model a variety of different

systems (see Appendix A). In this study we connected the layers
niformly at random ( Dickison et al., 2012; Sahneh et al., 2013;

ang et al., 2013 ) such that on average, every node in layer A con-

ects to one node in layer B ( e A ≈ e B ≈ 1). It is important to remem-

er, however, that in some cases nodes may be non-uniformly con-

ected between layers. For example, males may be more territo-

ial than females and thus have a stronger likelihood of interacting

ith individuals of other species, generating sex-biased connection

atterns. Such non-random interlayer connectivity may affect the

ynamics. 

In multihost systems, infection probability is usually assumed

o be lower (or equal, at most) between species than within-

pecies ( Fenton and Pedersen, 2005; Holt et al., 2003 ). We there-

ore considered βAB , βBA ≤ βAA = βBB = 0 . 03 . We chose to present

esults for βAA = βBB , but relaxing this assumption does not change

he results qualitatively (see Appendix B). We tested for the ef-

ect of asymmetry in infection probability by varying βAB and βBA 

rom 0 to 0.03 (including) in increments of 0.0 0 05, resulting in

1 × 61 = 3721 ( βAB , βBA ) combinations. For each ( βAB , βBA ) com-

ination, we randomly generated 100 interconnected networks,

ach of which was infected 10 0 0 times, resulting in 10 0,0 0 0 sim-

lations per combination. Each network had n A = n B = 10 0 0 nodes

nd a mean degree of < k > = 10 . However, we repeated those sim-

lations for n A = n B = 100 and n A = n B = 10 , 0 0 0 and found that

ur results were qualitatively similar (see Appendix C). We set the

nfectious period τA = τB = 6 . Each simulation was run until there

ere no more infected individuals. 

Because disease dynamics are typically discussed in terms of R 0 ,

ather than infection probabilities ( β), we present the numerical

esults in terms of R 0 in Figs. 2 and 3 , to facilitate the interpretation

n a more general disease-ecology context. Within each of the lay-

rs, the simulation parameters translate to intralayer R 0 = 1 . 8 : For

ayer L A , R 0 = τ < k > βAA = 6 × 10 × 0 . 03 = 1 . 8 , and similarly for

ayer L B (as stated, we work at the R 0 > 1 regime within layers). Be-

ween layers, R AB 
0 = τ e A βAB , and R BA 

0 is analogously defined. Since

n our simulations interlayer infection probabilities range from 0

o 0.03, R AB 
0 

and R BA 
0 

values are in the range of 0 to 0.18. Quali-

atively, because we maintain mean degree and infectious periods

xed, β ’s and R 0 ’s behave similarly, and are interchangeable in the

iscussion that follows. 

In each simulation, we calculated r ∞ 

— the final proportion of

ndividuals in layer L A (the focal host) who were infected at some

oint during the simulation. We then calculated two properties for

ach ( βAB , βBA ) combination: 

1. The probability of an outbreak, P A , defined as the proportion

of simulations (out of 10 0,0 0 0) in which the pathogen infected

more than 10% of the population. While the selection of 10% is

arbitrary, the exact value does not change the results. This is

due to the strong bi-modality in the infection process, which

is a consequence of the two types of components—giant and

non-giant—rather than a continuous distribution of component

sizes (Newman, 2002b) . We compare P A to P A calculated using

the analytic solution. 

2. Outbreak size—the mean number of individuals infected in

those simulations that have passed the 10% threshold, R 

A ∞ 

. We

compare R 

A ∞ 

to R A ∞ 

calculated using the analytic solution. 

Note that we use standard letters for notation of analytic pa-

ameters (e.g., P A ) and calligraphic letters for notation of parame-

ers related to the simulations (e.g., P A ). 

The analytic framework is flexible enough to allow for any

hoice of parameters which satisfy our assumptions. For example,

ne could choose unequal infection probabilities or recovery rates

or the two layers or other range of values for βAB , βBA (see exam-

le in Appendix B). 
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Fig. 2. Outbreak probability as a function of source of infection and interlayer R 0 values. Panels (a) and (b) depict the probability that a disease will infect at least 10% of 

the individuals in L A (denoted as P A ), when the disease originates in L A (scenario 1) and L B (scenario 2), respectively. In (c) and (d), colors represent cross-sections across 

R BA 
0 = 0 . 06 (red) and R AB 

0 = 0 . 06 (blue) in the parameter space of panels (a) and (b); solid lines are analytic solutions (denoted as P A in the main text) and closed circles 

are simulation results ( P A ). Note that selecting a threshold other than 10% does not change the results. The analytic solutions are derived from Eqs. 2,3 and Appendix A. In 

(d), the Y-intercept of the numeric results for R AB 
0 = 0 . 06 (blue) is at zero (not shown for clarity). Within each layer, R 0 = 1 . 8 (see text for details). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.1. Effect on the probability of an outbreak 

Eqs. (2) and ( 3 ) predict that the probability of an outbreak in

he focal species, P A , will strongly depend on the source of infec-

ion. This is so because these two equations differ in their param-

ters. Accordingly, we find in the simulations that when the dis-

ase originates in the focal host ( L A ), βAB determines P A to a large

xtent ( Fig. 2 a), whereas when the disease originates in L B , P A is

etermined almost exclusively by βBA ( Fig. 2 b). The reversal of the

oles of βAB and βBA with different source of infections is illus-

rated by observing horizontal and vertical ‘cross-sections’ across

he parameter space ( Fig. 2 c and d). It is evident from Fig. 2 c that

 A increases approximately linearly with increasing βAB , whereas

t remains rather constant with changes in βBA . The opposite pat-

ern is evident in Fig. 2 d, where P A increases approximately lin-

arly with an increase in βBA but almost does not change with βAB .

The emergence of this behavior is explained as follows. If an

utbreak did not occur in the source layer (which can be either

 A or L B ), then there must be transmission from the source to the

on-source layer (the terms on the right in Eqs. (2) and ( 3 )) for

n outbreak to still occur in L A . This transmission is a function of

he probability of infection from the source layer to the non-source

ayer. Once the infection traversed between layers, there are two

ptions: (i) there is no outbreak in the non-source layer and the

pidemic dies out (re-transmission back to the source layer is neg-

igible due to assumption 2); (ii) there is an outbreak and trans-

o  
ission back to the source layer is almost certain. In this case the

nfection probability from the non-source to the source layer plays

o role. Hence, both the source of infection and the asymmetry in

nterlayer transmission determine the behavior of P A . 

.2. Effect on outbreak size 

In contrast to the marked qualitative effect of the source of in-

ection on P A , it does not seem to have any major qualitative effect

n the behavior of R 

A ∞ 

( Fig. 3 ). The cross-sections show that R 

A ∞ 

ncreases approximately linearly as βBA increases but remains al-

ost unaffected by βAB , regardless of the source of infection. This

s so because R 

A ∞ 

is conditioned on an outbreak already occurring

n L A , and hence also in L B . The additional increase in R 

A ∞ 

(com-

ared to the case where it is a monolayer network) is due to in-

ections from the giant component in L B to non-giant components

n L A (again, under our assumptions back-transmission from non-

iant components is negligible). Therefore, the source of infection

as no effect on R 

A ∞ 

. In addition, βAB has no effect on R 

A ∞ 

as ev-

dent from the line which is parallel to the x-axis in Fig. 3 c and d

in red). This is in accordance with Eq. (4) which, as noted above,

oes not include transmission in the direction L A → L B . 

We note that in the scenario we simulated, we had equal in-

ralayer transmission rates ( βAA = βBB ) and similar intralayer net-

ork structures, which resulted in quantitatively similar values for

utbreak size and probability. However, this is not the general case
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Fig. 3. Outbreak size as a function of source of infection and interlayer R 0 values. Panels (a) and (b) depict the mean number of individuals infected in those simulations that 

have passed the 10% threshold (denoted as R 

A 
∞ ), when the disease originates in L A (scenario 1) and L B (scenario 2), respectively. In (c) and (d), colors represent cross-sections 

across R BA 
0 = 0 . 06 (red) and R AB 

0 = 0 . 06 (blue) in the parameter space of panels (a) and (b); solid lines are analytic solutions (denoted as R A ∞ in the main text) and closed 

circles are simulation results ( R 

A 
∞ ). The analytic solutions are derived from Eq. 4 and Appendix A. In (d), the Y-intercept of the numeric results for R AB 

0 = 0 . 06 (blue) is at 

zero (not shown for clarity). Error bars are not included in panels (c) and (d) because the standard error of the mean was too small to show. Within each layer, R 0 = 1 . 8 (see 

text for details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and even in this simple scenario outbreak size and probability be-

have qualitatively different (compare, for example, the trajectories

of the red/blue lines in Figs. 2 and 3 ). 

4.3. Limits of the analytic formulation 

Overall, it is evident from Figs. 2 and 3 that the numeric simu-

lations provide general support for the analytic solutions; however,

there are several discrepancies which deserve attention and which

also give us some insight into the infection process. Specifically,

these discrepancies can help in identifying a parameter space in

which the interdependent network can be studied through its lay-

ers. 

For very low values of interlayer transmission rates, the ana-

lytic solutions significantly diverge from the numerical simulations.

This is expected because when interlayer transmission is low, the

system will behave more as a single network and less as an in-

terconnected system. In such cases, even if an outbreak occurs in

the layer where the disease originated, the second layer is likely

to remain uninfected. This will violate Assumption 1 in regards to

Eqs. (2 )–( 4 ). These equations describe the contribution of the two

layers to outbreak probability and size, and are expected to overes-

timate the actual dynamics, as observed. We quantify and discuss

the violations of Assumption 1 in the simulations more thoroughly

in Appendix D. 

We observe another discrepancy between the analytic and nu-

meric solutions that increases as interlayer transmission rates in-
rease ( Figs. 2 c,d and 3 c,d). Here, the analytic formulations predict

 linear relation while the numeric simulations point to a slightly

ub-linear one. One possible explanation for this observation con-

erns the expected contribution of the interlayer edges to trans-

ission. The analytic formulations, under Assumption 2, consider

he expected contribution of each transmitting interlayer edge as

dditive (to both probability and size of outbreak), since at most

nly one transmitting edge connects non-giant to giant compo-

ents. However, when transmissibility is high enough, some inter-

ayer edges which transmit the disease may connect to the same

on-giant component, violating the assumption of additive contri-

ution to outbreak size and probability. Therefore, at sufficiently

igh interlayer transmission rates, the analytic formulations will

verestimate the actual dynamics. This process could be just one

f several factors driving these deviations, particularly when the

on-additive assumption is violated and complex feedbacks be-

ome likely. We quantify and discuss the violations of Assumption

 in the simulations more thoroughly in Appendix D. 

. Discussion 

In this work we bring together the theoretical aspects of the

hysics of infection processes on interconnected networks and of

he disease ecology of multihost systems. We show how to model

isease transmission in multi-host networks in ecological context,

elaxing the simplifying assumptions of one-way or symmetric in-

ection rates. The theory we present provides insights for multi-
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a

ost epidemics, as we show that asymmetry in interlayer infection

robabilities and the source of infection jointly determine disease

ynamics in multihost interconnected networks. Asymmetric infec-

ion rates between hosts have been documented in several disease

ystems. For example, Canine Distemper Virus in the Serengeti is

pread among multiple carnivore families but with different prob-

bilities ( Craft et al., 2008 ). In New Zealand, bovine tuberculosis

s transmitted among possums, feral pigs, deer and cattle but the

ole of each of these species in the overall dynamics of the disease

s different due to differences in the persistence of the bacteria in

ach of the hosts and behavioral differences ( Nugent, 2011 ). It may

e valuable to investigate the joint effect of the multihost network

tructure and asymmetry in between-host infection rates on dis-

ase dynamics in such systems. Moreover, outbreak probability and

ize were affected differently by the source of infection, empha-

izing the importance of considering different measures of disease

isk, and a more detailed understanding of the mechanisms that

nderlie them. 

We find that the dynamics in the focal host depends on

hether the disease originated in this host itself or in the non-

ocal host. Many models of multihost pathogen transmission in

isease ecology consider a target species infected by a reservoir

ource (disease originates in L B and βAB ≈ 0; e.g., Dobson, 2004;

enton and Pedersen, 2005 ). In the simulations, we assumed a con-

tant maximum within-species infection probability and thus ex-

mine the continuum between emerging infectious diseases such

s influenza ( βBA ≈ 0) and true multihost diseases such as foot-

nd-mouth disease ( βAB ≈βBA ≈βAA ≈βBB ) ( Fenton and Pedersen,

005; Viana et al., 2014 ). On this continuum (and when the dis-

ase originates in the non-focal host), our results are consistent

ith previous studies as we show that the role of βAB is minor

n determining outbreak probability and size. In the case where

etween-host and within-host infection probabilities are equal (a

rue multihost pathogen; Fenton and Pedersen, 2005 ), dynamics

ill be determined only by the distribution of interlayer and in-

ralayer edges. Dynamics in this class of network topology has

een explored thoroughly in the context of network community

tructure (see Pastor-Satorras et al., 2015 for a review), but repre-

ent a particular case of the more general epidemic behavior we

nvestigate here, which is often more relevant for disease ecology. 

While one-way transmission is particularly relevant for zoonotic

iseases, where identifying the source of infection is a major en-

eavor (Wolfe et al., 2007) , the distinction between source and tar-

et hosts is blurred for many parasites which can switch between

ost species. For example, cowpox virus can infect both bank

oles ( Clethrionomys glareolus ) and wood mice ( Apodemus sylvati-

us ), with different infection probabilities (Begon et al., 1999) and

umans and apes share several pathogens (Gómez et al., 2013) .

oreover, infection probability is unique to a host-pathogen com-

ination, resulting in among-host heterogeneity in infection prob-

bility to a given parasite (Streicker et al., 2013) . Accordingly, our

esults show that considering between-host infection probabilities

n both directions is crucial for disease outcomes. In addition, the

ualitative difference in behavior of outbreak size and probability

in relation to the source of infection) highlights the need to in-

lude (asymmetric) two-way infections and consider the source of

nfection in multi-host epidemic models. For example, work on the

hift of Microbotryum violaceum , the causal agent of anther-smut

isease, between plant species of the genus Silene has shown that

he transmission of the pathogen in both directions between the

ew and old plant hosts increases disease prevalence in both host

lants (Antonovics et al., 2002) , supporting our theoretical results. 

Regardless of the host of origin, when the conditions and as-

umptions of our model are relevant, the non-focal host serves as

n amplifier of the disease, in the sense that an increase in species

ichness increases disease risk (here measured as outbreak proba-
ility and size) (Keesing et al., 2006) . This is clearly evident from

qs. (2 –4) which have two additive terms. However, the contribu-

ion of the non-focal host to epidemic size depends mainly on the

ransmissibility in the direction L B → L A . Another way in which the

on-focal host functions as a disease amplifier is that epidemio-

ogical cases in the focal host are not necessarily linked. This is

ecause in networks, unlike in mean-field models, there are alter-

ative routes for the infection to spread by carrying the disease

o parts of the focal host network where it has not reached or

ould not have reached by infection within the focal host alone.

his phenomenon becomes more likely with increasing between-

pecies transmission. 

Our study also has implications for the more general field of

etwork science. Previous theoretical studies of epidemic spread in

nterconnected networks have focused on topological patterns that

nable disease establishment (i.e., R 0 > 1), while assuming symme-

ry in interlayer infection probabilities ( Boccaletti et al., 2014; Dick-

son et al., 2012; Salehi et al., 2015; Wang et al., 2013; Wang and

iao, 2011 ). Only one study that we know of has addressed asym-

etric rates of infection between two networks (Sahneh et al.,

013) but the authors investigated an analytic solution to the com-

ination of infection probabilities that allows crossing the epidemic

hreshold ( R 0 > 1). Hence, previous studies highlight the important

ole of interlayer feedbacks, where outcomes of dynamics cannot

e extrapolated by analyzing each layer separately. By contrast, we

dentify a region of the parameter space within the supercritical

egime ( R 0 > 1), in which it is possible to understand overall sys-

em dynamics by integrating the dynamics evaluated for each layer

eparately. Additionally, our study advances the theory of diffusion

n interconnected networks as it emphasizes that asymmetry in in-

erlayer infection probabilities can change the expected diffusion

ynamics due to a joint effect with the source of infection on epi-

emic size and probability. 

One limitation of our simulation study is that the parameter

alues we have selected are somewhat arbitrary. The reason for

hat is the lack of empirical data of both within- and between-

opulation contacts,together with information on infection proba-

ilities. This is a reflection of the recently highlighted more general

hallenge of linking models to data in network epidemiology (Pellis

t al., 2015) . Such data is needed to corroborate if our two assump-

ions are indeed valid for natural systems, as well as to understand

he parameter ranges that should be the focus of theoretical mod-

ling. We thus emphasize the importance of data collection and

he generation of multi-species data sets. 

In conclusion, our findings contribute to a better understanding

f disease dynamics in multihost systems on the one hand, and

dvance the theoretical understanding of epidemic spread in mul-

ilayer networks on the other. We hope that this and other stud-

es which explore mechanistic models of disease spread in multi-

ost networks will stimulate empirical studies, ultimately improv-

ng our predictive power of disease spread in multihost systems. 
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