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Epidemic spread in single-host systems strongly depends on the population’s transmission network. How-
ever, little is known regarding the spread of epidemics across networks representing populations of
multiple hosts. We explored cross-species transmission in a multilayer network where layers represent
populations of two distinct hosts, and disease can spread across intralayer (within-host) and interlayer
(between-host) edges. We developed an analytic framework for the SIR epidemic model to examine the
effect of (i) source of infection and (ii) between-host asymmetry in infection probabilities, on disease risk.
We measured risk as outbreak probability and outbreak size in a focal host, represented by one network
layer. Numeric simulations were used to validate the analytic formulations. We found that outbreak prob-
ability is determined by a complex interaction between source of infection and between-host infection
probabilities, whereas outbreak size is mainly affected by the non-focal host to focal host infection prob-
ability. Hence, inter-specific asymmetry in infection probabilities shapes disease dynamics in multihost
networks. These results highlight the importance of considering multiple measures of disease risk and
advance our understanding of disease spread in multihost systems. The study provides a flexible way to
model disease dynamics in multiple hosts while considering contact heterogeneity within and between
species. We strongly encourage empirical studies that include information on both cross-species infection
rates and network structure of multiple hosts. Such studies are necessary to corroborate our theoretical

results and to improve our understanding of multihost epidemiology.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the transmission of disease among multiple
hosts is a major endeavor of disease ecology because it provides
insights into the possible impact of cross-species transmission on
agriculture (e.g., transmission between wildlife and domestic an-
imals), persistence of wild populations, and species conservation
efforts (Bohm et al., 2009; Fenton and Pedersen, 2005; Lang-
wig et al., 2012; Tompkins et al., 2003). For example, white-nose
syndrome, induced by the fungus Pseudogymnoascus destructans,
which invaded North America from Europe, is causing major de-
clines in bat populations of several species (Blehert et al., 2009;
Langwig et al, 2012). From a public health perspective, under-
standing cross-species transmission helps us understand the risk
of zoonotic diseases (Daszak, 2000; Wolfe et al., 2007), with no-
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table examples such as avian influenza and Ebola (Gire et al., 2014;
Wang and Eaton, 2007).

Mathematical models of disease transmission across multiple
hosts are typically mean-field models, which assume homogeneity
in contacts within and between species (Craft and Caillaud, 2011;
Fenton and Pedersen, 2005; Keesing et al., 2006). By contrast,
network models consider heterogeneities in the contact structure
(Bansal et al., 2007; Craft and Caillaud, 2011; Keeling and Eames,
2005) or other meaningful proxy for transmission (e.g., parasite
sharing Pilosof et al., 2015; VanderWaal et al., 2013; 2014). This is
important because heterogeneity in contacts can capture much of
the variation in pathogen transmission (Craft and Caillaud, 2011;
Pastor-Satorras et al.,, 2015). However, network models commonly
represent a population of a single host species. Two main reasons
can explain the paucity of multihost studies within a network anal-
ysis framework: (i) obtaining data on the contact networks within
each species as well as data on interspecific contacts is extremely
resource-intensive (Perkins et al., 2009); and, (ii) ‘classic’ network
models are not adequate for modeling between-species contact
heterogeneity because they contain a single network, representing
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Host A Bgsa Host B

Fig. 1. A multilayer interconnected network between hosts A (left side) and B (right
side). Intralayer edges (in black) represent contacts between individuals of the same
host species. Interlayer edges (in orange) represent contacts between individuals of
different host species. Infection probabilities between hosts A and B (845 and Bga)
may be asymmetric (represented by different width of orange arrows). Individuals
can be susceptible (black nodes), infected (red nodes) or recovered (blue nodes).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

a population of a single host species, disconnected from networks
of other hosts. In this paper we address this second limitation.

One way to model disease spread across several hosts is with
multilayer networks in which different layers can represent differ-
ent host species. In particular, interconnected networks (as defined
by Kiveld et al., 2014) are a useful representation because they con-
tain two types of edges: intralayer edges connect individuals from
the same population, while interlayer edges connect individuals
from different populations (Fig.1). Disease transmission in inter-
connected networks has been explored in the field of physics, and
driven by human-related examples (reviewed in Boccaletti et al.,
2014; Kiveld et al., 2014; Salehi et al., 2015). The main focus of
these studies has been on modeling the conditions necessary for a
disease to emerge (i.e., cross the Ry = 1 threshold). Such conditions
include the distributions of intralayer vs. interlayer edges in the
network, which can create regimes whereby a disease spreads in
one network but not in another (Dickison et al., 2012). For exam-
ple, Saumell-Mendiola et al. (2012) have shown that when the cor-
relation between the intralayer and interlayer degree distributions
is strong, an outbreak may occur in the system even if it would not
have occurred in any of the single layers alone. By contrast, in this
paper we model disease transmission in interconnected multihost
networks in a regime where the disease has already emerged (i.e.,
Rog > 1) in order to study the outcomes of such epidemics.

We adopt an ecological point of view according to which an iso-
lated network represents a population of a particular host species
while an interconnected network represents a multihost system
composed of populations of distinct host species (Fig. 1). For exam-
ple, the transmission of bovine tuberculosis from badgers to cows
may depend on the network structure of both species Bohm et al.
(2009). This view is both realistic and necessary because (i) in mul-
tihost systems one host can alter the dynamics of pathogens in
other hosts (Dobson, 2004; Fenton and Pedersen, 2005; Holt et al.,
2003; Keesing et al., 2006) and (ii) these dynamics can be affected
by the underlying network structure of each host Craft and Cail-
laud (2011).

In disease ecology, some multihost pathogen transmission mod-
els focus on the case in which a target species is infected by a
source species (Fenton and Pedersen, 2005; Viana et al., 2014). In
these models, little or no transmission from the target back to the
source is assumed (Dobson, 2004; Viana et al., 2014). Other mod-
els deal with diseases that can be transmitted and maintained by
more than one species (e.g., bovine tuberculosis or canine distem-
per virus). In this case, the dynamics of disease in the host of inter-

est, which we term the focal host, may be affected by two factors
inherent to multihost systems: (i) the source of infection — if the
disease originates in the focal host itself or in a non-focal host;
and (ii) the asymmetry in the rate of transmission between the
two hosts. Both of these factors are of crucial importance for cross-
species pathogen transmission (Craft et al., 2008; Dobson, 2004;
Fenton and Pedersen, 2005). For example, recurrent infections from
a non-focal host can cause endemic infection in a focal host even
if the pathogen cannot establish in it (Fenton and Pedersen, 2005).
Additionally, in zoonotic diseases the source of infection is the an-
imal, rather than the human, causing strong asymmetry in infec-
tion dynamics; that is, probability of infection is higher from an
animal species to humans than the other way around (Chapman
et al., 2005; Wolfe et al., 2007).

Our goal is to understand how the interaction between these
two factors affects disease dynamics in an interconnected network
system. We quantify dynamics using two measures: (i) The prob-
ability of an outbreak, meaning the probability that a significant
portion of the population is infected (see below); and (ii) the ex-
pected size of an outbreak (i.e., the proportion of the population
infected), when an outbreak occurs. We develop an analytic frame-
work to quantify outbreak size and probability in interconnected
networks with asymmetric infection rates between the networks,
in order to gain insights into multihost disease dynamics.

2. Modeling pathogen spread in interconnected networks

Following previous studies on interconnected networks
(Dickison et al., 2012; Saumell-Mendiola et al., 2012; Wang
et al., 2013), we use interconnected networks as depicted in Fig. 1.
We refer to each of the single networks in an interconnected
network as layers (Kiveld et al., 2014). Intralayer edges connect
nodes within a layer while interlayer edges connect nodes from
different layers. For simplicity, we considered the case of two
interconnected populations (belonging to different hosts). We
explore disease dynamics in layer A (L) of the interconnected
network and thus consider L, as our focal host species and layer B
(Lg) as the non-focal species (Fig.1). We define the mean number of
interlayer edges connected to a node (or ‘mean interlayer degree’)
in Ly as ey = % where E is the number of interlayer edges and
n, is the number of nodes in Ls. The mean interlayer degree in Lg
is analogously defined as e = nET;'

We note that the networks we use are inherently different from
models of disease spread in metapopulations, where the connec-
tion between populations is quantified via dispersal of individu-
als (Colizza and Vespignani, 2008) or from studies of interconnect
transportation systems (Balcan et al., 2009). Instead, we focus on
modeling epidemic spread in scenarios more relevant to multihost
epidemics, where disease transmission occurs via contact or vec-
tor, and transmission is often asymmetrical. For example, the Ebola
virus can be transmitted between groups of primates from differ-
ent species (Walsh et al., 2007).

We study the spread of a pathogen in interconnected networks
with an SIR model, in which each individual belongs to one of
three compartments: susceptible (S), infected and thus infectious
(I) or resistant and not infectious (R). It is advantageous to work
with the SIR model because it is relevant for a vast range of dis-
eases and because it is well established in the network epidemi-
ology literature (Pastor-Satorras et al., 2015), providing us with a
sound theoretical basis to build upon.

Following Begon et al. (2002), we denote the probability that a
contact between an infectious and a susceptible individual leads to
successful transmission of infection in a given time interval as 8
(this is the equivalent of v from Begon et al., 2002). We hereafter
refer to this parameter as infection probability. Because nodes in
different layers belong to different species, the probability that a
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susceptible individual will be infected by an infectious neighbor is
determined by the species identity of both. Hence, 8 depends on
the layers to which the two nodes belong (Dobson, 2004). We thus
defined the infection matrix

Baa  Bas
a [ﬁm ﬁBB] )

For example, f4p is the probability that a node in L, will be
infected by a node from Lg. Individuals transition from an infected
state to a recovered state after a given amount of time (the infec-
tious period, 7), and the recovery rate is therefore y = % (sensu
Keeling and Rohani, 2008).

We use the SIR model to examine two infection scenarios. In
Scenario 1 the epidemic originates with an individual in L4 (the fo-
cal host) whereas in Scenario 2 it originates with an individual in
Lg (the non-focal host). In both scenarios we track only the popu-
lation of the focal host.

3. Analytic formulation of outbreak size and probability

The SIR spreading process on a network can be analytically
studied by equating it with a bond percolation process (Keeling
and Eames, 2005; Newman, 2002b). The bond percolation prob-
lem concerns diffusion through a discrete substrate to form clus-
ters. In monolayer (non-interconnected) networks, the probability
of a large outbreak and the expected size of such an outbreak in
arbitrary random networks (random networks with any degree dis-
tribution) has been described by Newman (2002a). A percolation
process on a network may be subcritical, in which case the diffu-
sion is confined to a small number of nodes; Alternatively, it can
be supercritical, in which case a giant component emerges and the
diffusion process may cover a significant portion of the network.
An outbreak can occur only when the system is in the supercrit-
ical phase; in epidemiological terms, this means that the disease
crosses the Ry =1 threshold. Because we are interested in those
settings where an epidemic may potentially have serious conse-
quences for populations, we focus on scenarios in the supercritical
phase.

The transmissibility of the pathogen via a given edge depends
on both the infection probability and the recovery rate and is

T=1-(1- /3)% (Newman, 2002b). This property is a measure of
the likelihood that the disease will be transmitted via a given edge
if one of the nodes adjacent to it is infected. Transmissibility allows
evaluating the size of an outbreak, if one occurs, by estimating the
expected size of the giant component (i.e., the expected fraction
of the network occupied by the giant component) in the perco-
lation process on the network (Newman, 2002a; 2002b); that is,
after keeping only a fraction of the original edges in the network
along which the disease may be transmitted. For a large random
network with an arbitrary degree distribution, both the size of the
giant component, S, and the mean size of the non-giant compo-
nents, s, can be calculated using percolation theory (see Appendix
A). The size of the giant component corresponds to the size of an
outbreak, since it is composed of exactly those nodes that will be
infected if the epidemic originates in any node in the giant com-
ponent. The probability that an epidemic starting in a random in-
dividual will result in an outbreak, P, is the same as the probability
of belonging to the giant component, and thus in monolayer net-
works P =S (Newman, 2002a; 2002b).

Applying percolation theory to interconnected networks is
not straightforward, particularly when the infection probability is
asymmetric (Bap # Bga). While the percolation process can de-
scribe the SIR dynamics in each of the layers separately (as for
monolayer networks), the pathogen spreads across the interlayer
edges with different probabilities in each direction. Therefore,
there is no single transmissibility value for the interlayer edges,

and the problem of finding the outbreak probability and size can-
not be formulated as a simple percolation process. To provide ap-
proximation for outbreak size and probability in interconnected
networks, we start by considering the percolation processes in
each layer independently, as if they were disconnected. We then
add the effect of the other layer for increasing the probability and
size of outbreaks.

We assume (Assumption 1) that an outbreak in one layer will
inevitably lead to an outbreak in the second layer. This is be-
cause the layers are sufficiently connected and outbreaks within
layers are sufficiently large (when they occur), such that at least
one interlayer edge will transmit the disease to the giant compo-
nent in the other layer. Next, we consider the nature of the mul-
tihost setting. First, due to behavioral and life history differences
between species, within-host contact rates are usually greater than
between-host contact rates. Hence, there are less interlayer con-
tacts than intralayer contacts per individual. Second, once two in-
dividuals come in contact, within-host infection probabilities are
larger than between-host infection probabilities, for instance due
to physiological competence between the host and the pathogen.
This is a common assumption in virtually all multihost transmis-
sion models in disease ecology (Fenton and Pedersen, 2005; Holt
et al,, 2003; Poulin, 2007). It follows that interlayer transmission
rates are lower than intralayer transmission rates. We combine
these two assertions — low interlayer connectivity and low inter-
layer transmission rates — to a second assumption (Assumption 2),
according to which each of the non-giant components formed by
the bond percolation process is expected to transmit or receive the
disease through at most one edge. That is, although it is permis-
sible for non-giant components to have more than one interlayer
edges connecting them, non-giant components cannot have more
than one transmitting interlayer edge.

3.1. Probability of outbreak in interconnected networks

We wish to find the analytic solution to P4 — the probabil-
ity of an outbreak in layer L,. The probability of an outbreak in
each of the layers if the interlayer edges are epidemiologically
disconnected (i.e., B4 =0 and Bga = 0) is the same as the size
of the giant component in the percolation process in these lay-
ers; we denote these sizes as S4 and Sg. We further denote s,
and sg as the mean number of nodes in the non-giant compo-
nents in layers A and B, respectively, when the layers are dis-
connected. All these sizes — Sa, Sg, Sa, Sg — are functions of the
intralayer infection probabilities (844 or Bgg), the recovery rates
(ya or ypg), and the relevant intralayer degree distribution (see
Appendix A). Note that S, and Sg are measured as a fraction of
the network size, while s, and sg are measured in absolute num-
ber of nodes, rather than in fractions. When the layers are con-
nected, the transmissibility of the patlllogen from L, to Lg via the

interlayer edges is Tyg = 1 — (1 — Bag) 74, where y,4 is the recovery
rate of the host in Ly. This gives the probability that the pathogen
spreads from an infected individual in L, to a connected individual
in Lg through a giveln interlayer edge. Tga is analogously defined as
Toa=1—(1-Bpa)7s.

In Scenario 1, an outbreak may occur as a result of intralayer
transmissions within L, if the node of origin belongs to the giant
component. Alternatively, if the node of origin is not in the giant
component, an epidemic may occur as a result of transmission to
Lg causing an outbreak there which is then transmitted back to L,.
This will occur if (i) the non-giant component in which the dis-
ease originated is connected to Lg via an interlayer edge (with ex-
pected value e4S,); (ii) the interlayer edge transmits the disease to
Lg (with probability T4g); (iii) the node to which the pathogen is
transmitted is in the giant component in Lg (with probability Sg).
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Therefore, in Scenario 1
Py =S4+ (1 —Sp)SpeasaTas (2)

The first term in the equation refers to the case in which dis-
ease originates in the giant component whereas the second term
refers to the concurrence of the three conditions mentioned, in the
case where the disease originates in the non-giant component. We
see that the probability of an outbreak depends only on the inter-
layer edge transmissibility in the direction L, — Lg. This is so be-
cause the infection in the other direction will occur if there is an
outbreak in Lg, regardless of the transmissibility of the epidemic in
the direction Lg — L4 (due to Assumption 1).

In scenario 2, the disease originates in Lz and the logic is anal-
ogous. An outbreak will occur in L, if an outbreak occurs in Lg.
Alternatively, if an outbreak does not occur in Lg, but (i) the non-
giant component infected in Lz is connected with an interlayer
edge (with expected value egsg), (ii) this connecting edge trans-
mits the epidemic (with probability Tgs), and (iii) the infection in
Ly results in an outbreak (with probability S,). The probability of
an outbreak in this scenario is therefore:

Py =S+ (1 — Sp)SaepspTpa. (3)
3.2. Outbreak size in interconnected networks

While in monolayer networks the size and probability of an
outbreak are the same (S = P), this is not the case in intercon-
nected networks, as we show below. In scenario 1, the size of an
outbreak in Ly, which we denote as R4, is augmented by the pos-
sible infection of the non-giant components in the percolation pro-
cess on that layer. Since we assume an outbreak occurs in Ls, an
outbreak must occur in Lg as well. The giant-component in Lz may
be connected via interlayer edges to non-giant component in Ly
which may now become infected. The number of interlayer edges
connected to the giant component in Lg is Sgegng, of which a frac-
tion of 1 —S, are connected to non-giant components in L,. Each
such infection in L, increases the size of the outbreak by ;—: (due

to Assumption 2). Therefore,

0 =

n
RA =S4 +Sp(1 - SA)SAeBrTjTBA =S +Sp(1 —Sp)saealpa. (4)

Notice that Eq. (4) is different from both Eqs. (2) and (3) in that
only transmission in the direction Ly — L4 plays a role.

For scenario 2 the formulation is similar. Since we assume that
an outbreak occurs in La, it is of no significance to the outbreak
size where the epidemic originated, since an outbreak must oc-
cur in Lg. Therefore, Ly augments the outbreak in Ly in a similar
manner as for Scenario 1, and Eq. (4) holds in this case as well.
Therefore (and in contrast to the probability of an epidemic), only
transmission rates in the direction Ly — L, affect outbreak size, re-
gardless of the source of the epidemic.

4. Numeric simulations of the spreading process

To test the analytic solutions, we compared them with numeric
simulations. We used the Erdés-Rényi (ER) model as it is com-
monly considered as a ‘null’ network structure and because for
the purpose of theoretical work, which aims to provide a general
framework to generate predictions, the use of well-defined net-
work models is advantageous (Newman, 2003). We find explicit
solutions for the ER model (see Appendix A for derivation of S and
s for ER networks), and compare them to simulation results. Nat-
ural animal or human networks do not necessarily fit into prede-
fined network structures. Because our analytic framework is based
on a derivation for random networks with any degree distribution
(Newman, 2002b), it can be used to model a variety of different
systems (see Appendix A). In this study we connected the layers

uniformly at random (Dickison et al., 2012; Sahneh et al., 2013;
Wang et al., 2013) such that on average, every node in layer A con-
nects to one node in layer B (e4 ~eg~1). It is important to remem-
ber, however, that in some cases nodes may be non-uniformly con-
nected between layers. For example, males may be more territo-
rial than females and thus have a stronger likelihood of interacting
with individuals of other species, generating sex-biased connection
patterns. Such non-random interlayer connectivity may affect the
dynamics.

In multihost systems, infection probability is usually assumed
to be lower (or equal, at most) between species than within-
species (Fenton and Pedersen, 2005; Holt et al., 2003). We there-
fore considered Bag, Bpa < Baa = Bgg = 0.03. We chose to present
results for 844 = Bgp, but relaxing this assumption does not change
the results qualitatively (see Appendix B). We tested for the ef-
fect of asymmetry in infection probability by varying S4p and Sga
from 0 to 0.03 (including) in increments of 0.0005, resulting in
61 x 61 = 3721 (B4, Bpa) combinations. For each (845, Bpa) com-
bination, we randomly generated 100 interconnected networks,
each of which was infected 1000 times, resulting in 100,000 sim-
ulations per combination. Each network had n, = ng = 1000 nodes
and a mean degree of < k >= 10. However, we repeated those sim-
ulations for ng =ng =100 and n4 = ng = 10,000 and found that
our results were qualitatively similar (see Appendix C). We set the
infectious period 74 = t3 = 6. Each simulation was run until there
were no more infected individuals.

Because disease dynamics are typically discussed in terms of Ry,
rather than infection probabilities (8), we present the numerical
results in terms of Ry in Figs.2 and 3, to facilitate the interpretation
in a more general disease-ecology context. Within each of the lay-
ers, the simulation parameters translate to intralayer Ry = 1.8: For
layer Ly, Rg =T <k > Baa =6 x 10 x 0.03 = 1.8, and similarly for
layer Lp (as stated, we work at the Ry > 1 regime within layers). Be-
tween layers, RA% = 7 e4 B4p, and REA is analogously defined. Since
in our simulations interlayer infection probabilities range from 0
to 0.03, RA? and RBA values are in the range of 0 to 0.18. Quali-
tatively, because we maintain mean degree and infectious periods
fixed, B’s and Ry’s behave similarly, and are interchangeable in the
discussion that follows.

In each simulation, we calculated r,, — the final proportion of
individuals in layer Ly (the focal host) who were infected at some
point during the simulation. We then calculated two properties for
each (Bap, Bpa) combination:

1. The probability of an outbreak, P4, defined as the proportion
of simulations (out of 100,000) in which the pathogen infected
more than 10% of the population. While the selection of 10% is
arbitrary, the exact value does not change the results. This is
due to the strong bi-modality in the infection process, which
is a consequence of the two types of components—giant and
non-giant—rather than a continuous distribution of component
sizes (Newman, 2002b). We compare P, to P4 calculated using
the analytic solution.

2. Outbreak size—the mean number of individuals infected in
those simulations that have passed the 10% threshold, R4.. We
compare R4 to R4, calculated using the analytic solution.

Note that we use standard letters for notation of analytic pa-
rameters (e.g., P4) and calligraphic letters for notation of parame-
ters related to the simulations (e.g., Py).

The analytic framework is flexible enough to allow for any
choice of parameters which satisfy our assumptions. For example,
one could choose unequal infection probabilities or recovery rates
for the two layers or other range of values for S, Bpa (see exam-
ple in Appendix B).
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Fig. 2. Outbreak probability as a function of source of infection and interlayer Ry values. Panels (a) and (b) depict the probability that a disease will infect at least 10% of
the individuals in L, (denoted as P,), when the disease originates in L, (scenario 1) and L (scenario 2), respectively. In (c) and (d), colors represent cross-sections across
Rg" =0.06 (red) and RA® = 0.06 (blue) in the parameter space of panels (a) and (b); solid lines are analytic solutions (denoted as P4 in the main text) and closed circles
are simulation results (P,). Note that selecting a threshold other than 10% does not change the results. The analytic solutions are derived from Eqs.2,3 and Appendix A. In
(d), the Y-intercept of the numeric results for R® = 0.06 (blue) is at zero (not shown for clarity). Within each layer, Ry = 1.8 (see text for details). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

4.1. Effect on the probability of an outbreak

Egs. (2) and (3) predict that the probability of an outbreak in
the focal species, P4, will strongly depend on the source of infec-
tion. This is so because these two equations differ in their param-
eters. Accordingly, we find in the simulations that when the dis-
ease originates in the focal host (L), B4z determines P, to a large
extent (Fig.2a), whereas when the disease originates in Lg, Py is
determined almost exclusively by Sga (Fig.2b). The reversal of the
roles of Bap and Bps with different source of infections is illus-
trated by observing horizontal and vertical ‘cross-sections’ across
the parameter space (Fig.2c and d). It is evident from Fig.2c that
P, increases approximately linearly with increasing B,p, whereas
it remains rather constant with changes in Bg4. The opposite pat-
tern is evident in Fig.2d, where P, increases approximately lin-
early with an increase in 84 but almost does not change with S4p.

The emergence of this behavior is explained as follows. If an
outbreak did not occur in the source layer (which can be either
Ly or Lg), then there must be transmission from the source to the
non-source layer (the terms on the right in Eqs. (2) and(3)) for
an outbreak to still occur in Ls. This transmission is a function of
the probability of infection from the source layer to the non-source
layer. Once the infection traversed between layers, there are two
options: (i) there is no outbreak in the non-source layer and the
epidemic dies out (re-transmission back to the source layer is neg-
ligible due to assumption 2); (ii) there is an outbreak and trans-

mission back to the source layer is almost certain. In this case the
infection probability from the non-source to the source layer plays
no role. Hence, both the source of infection and the asymmetry in
interlayer transmission determine the behavior of P,.

4.2. Effect on outbreak size

In contrast to the marked qualitative effect of the source of in-
fection on P, it does not seem to have any major qualitative effect
on the behavior of R4, (Fig.3). The cross-sections show that RA,
increases approximately linearly as B4 increases but remains al-
most unaffected by Bag, regardless of the source of infection. This
is so because R4, is conditioned on an outbreak already occurring
in Ly, and hence also in Lg. The additional increase in R4, (com-
pared to the case where it is a monolayer network) is due to in-
fections from the giant component in Lg to non-giant components
in L, (again, under our assumptions back-transmission from non-
giant components is negligible). Therefore, the source of infection
has no effect on R4 In addition, B4z has no effect on R4, as ev-
ident from the line which is parallel to the x-axis in Fig.3c and d
(in red). This is in accordance with Eq. (4) which, as noted above,
does not include transmission in the direction L4 — Lg.

We note that in the scenario we simulated, we had equal in-
tralayer transmission rates (844 = Bgg) and similar intralayer net-
work structures, which resulted in quantitatively similar values for
outbreak size and probability. However, this is not the general case
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Fig. 3. Outbreak size as a function of source of infection and interlayer Ry values. Panels (a) and (b) depict the mean number of individuals infected in those simulations that
have passed the 10% threshold (denoted as R4,), when the disease originates in L, (scenario 1) and L (scenario 2), respectively. In (c) and (d), colors represent cross-sections
across REA = 0.06 (red) and R4 = 0.06 (blue) in the parameter space of panels (a) and (b); solid lines are analytic solutions (denoted as RA in the main text) and closed
circles are simulation results (R4,). The analytic solutions are derived from Eq.4 and Appendix A. In (d), the Y-intercept of the numeric results for R’(}B = 0.06 (blue) is at
zero (not shown for clarity). Error bars are not included in panels (c) and (d) because the standard error of the mean was too small to show. Within each layer, R = 1.8 (see
text for details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and even in this simple scenario outbreak size and probability be-
have qualitatively different (compare, for example, the trajectories
of the red/blue lines in Figs.2 and 3).

4.3. Limits of the analytic formulation

Overall, it is evident from Figs.2 and 3 that the numeric simu-
lations provide general support for the analytic solutions; however,
there are several discrepancies which deserve attention and which
also give us some insight into the infection process. Specifically,
these discrepancies can help in identifying a parameter space in
which the interdependent network can be studied through its lay-
ers.

For very low values of interlayer transmission rates, the ana-
lytic solutions significantly diverge from the numerical simulations.
This is expected because when interlayer transmission is low, the
system will behave more as a single network and less as an in-
terconnected system. In such cases, even if an outbreak occurs in
the layer where the disease originated, the second layer is likely
to remain uninfected. This will violate Assumption 1 in regards to
Egs. (2)-(4). These equations describe the contribution of the two
layers to outbreak probability and size, and are expected to overes-
timate the actual dynamics, as observed. We quantify and discuss
the violations of Assumption 1 in the simulations more thoroughly
in Appendix D.

We observe another discrepancy between the analytic and nu-
meric solutions that increases as interlayer transmission rates in-

crease (Figs.2c,d and 3 c,d). Here, the analytic formulations predict
a linear relation while the numeric simulations point to a slightly
sub-linear one. One possible explanation for this observation con-
cerns the expected contribution of the interlayer edges to trans-
mission. The analytic formulations, under Assumption 2, consider
the expected contribution of each transmitting interlayer edge as
additive (to both probability and size of outbreak), since at most
only one transmitting edge connects non-giant to giant compo-
nents. However, when transmissibility is high enough, some inter-
layer edges which transmit the disease may connect to the same
non-giant component, violating the assumption of additive contri-
bution to outbreak size and probability. Therefore, at sufficiently
high interlayer transmission rates, the analytic formulations will
overestimate the actual dynamics. This process could be just one
of several factors driving these deviations, particularly when the
non-additive assumption is violated and complex feedbacks be-
come likely. We quantify and discuss the violations of Assumption
2 in the simulations more thoroughly in Appendix D.

5. Discussion

In this work we bring together the theoretical aspects of the
physics of infection processes on interconnected networks and of
the disease ecology of multihost systems. We show how to model
disease transmission in multi-host networks in ecological context,
relaxing the simplifying assumptions of one-way or symmetric in-
fection rates. The theory we present provides insights for multi-
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host epidemics, as we show that asymmetry in interlayer infection
probabilities and the source of infection jointly determine disease
dynamics in multihost interconnected networks. Asymmetric infec-
tion rates between hosts have been documented in several disease
systems. For example, Canine Distemper Virus in the Serengeti is
spread among multiple carnivore families but with different prob-
abilities (Craft et al., 2008). In New Zealand, bovine tuberculosis
is transmitted among possums, feral pigs, deer and cattle but the
role of each of these species in the overall dynamics of the disease
is different due to differences in the persistence of the bacteria in
each of the hosts and behavioral differences (Nugent, 2011). It may
be valuable to investigate the joint effect of the multihost network
structure and asymmetry in between-host infection rates on dis-
ease dynamics in such systems. Moreover, outbreak probability and
size were affected differently by the source of infection, empha-
sizing the importance of considering different measures of disease
risk, and a more detailed understanding of the mechanisms that
underlie them.

We find that the dynamics in the focal host depends on
whether the disease originated in this host itself or in the non-
focal host. Many models of multihost pathogen transmission in
disease ecology consider a target species infected by a reservoir
source (disease originates in Lg and B4p~0; e.g., Dobson, 2004;
Fenton and Pedersen, 2005). In the simulations, we assumed a con-
stant maximum within-species infection probability and thus ex-
amine the continuum between emerging infectious diseases such
as influenza (Bps~0) and true multihost diseases such as foot-
and-mouth disease (Bap~ Bpa~ Baa~ Bpg) (Fenton and Pedersen,
2005; Viana et al., 2014). On this continuum (and when the dis-
ease originates in the non-focal host), our results are consistent
with previous studies as we show that the role of g is minor
in determining outbreak probability and size. In the case where
between-host and within-host infection probabilities are equal (a
true multihost pathogen; Fenton and Pedersen, 2005), dynamics
will be determined only by the distribution of interlayer and in-
tralayer edges. Dynamics in this class of network topology has
been explored thoroughly in the context of network community
structure (see Pastor-Satorras et al., 2015 for a review), but repre-
sent a particular case of the more general epidemic behavior we
investigate here, which is often more relevant for disease ecology.

While one-way transmission is particularly relevant for zoonotic
diseases, where identifying the source of infection is a major en-
deavor (Wolfe et al., 2007), the distinction between source and tar-
get hosts is blurred for many parasites which can switch between
host species. For example, cowpox virus can infect both bank
voles (Clethrionomys glareolus) and wood mice (Apodemus sylvati-
cus), with different infection probabilities (Begon et al., 1999) and
humans and apes share several pathogens (Gomez et al., 2013).
Moreover, infection probability is unique to a host-pathogen com-
bination, resulting in among-host heterogeneity in infection prob-
ability to a given parasite (Streicker et al., 2013). Accordingly, our
results show that considering between-host infection probabilities
in both directions is crucial for disease outcomes. In addition, the
qualitative difference in behavior of outbreak size and probability
(in relation to the source of infection) highlights the need to in-
clude (asymmetric) two-way infections and consider the source of
infection in multi-host epidemic models. For example, work on the
shift of Microbotryum violaceum, the causal agent of anther-smut
disease, between plant species of the genus Silene has shown that
the transmission of the pathogen in both directions between the
new and old plant hosts increases disease prevalence in both host
plants (Antonovics et al., 2002), supporting our theoretical results.

Regardless of the host of origin, when the conditions and as-
sumptions of our model are relevant, the non-focal host serves as
an amplifier of the disease, in the sense that an increase in species
richness increases disease risk (here measured as outbreak proba-

bility and size) (Keesing et al., 2006). This is clearly evident from
Eqs. (2-4) which have two additive terms. However, the contribu-
tion of the non-focal host to epidemic size depends mainly on the
transmissibility in the direction Lg — L4. Another way in which the
non-focal host functions as a disease amplifier is that epidemio-
logical cases in the focal host are not necessarily linked. This is
because in networks, unlike in mean-field models, there are alter-
native routes for the infection to spread by carrying the disease
to parts of the focal host network where it has not reached or
would not have reached by infection within the focal host alone.
This phenomenon becomes more likely with increasing between-
species transmission.

Our study also has implications for the more general field of
network science. Previous theoretical studies of epidemic spread in
interconnected networks have focused on topological patterns that
enable disease establishment (i.e., Ry > 1), while assuming symme-
try in interlayer infection probabilities (Boccaletti et al., 2014; Dick-
ison et al., 2012; Salehi et al., 2015; Wang et al., 2013; Wang and
Xiao, 2011). Only one study that we know of has addressed asym-
metric rates of infection between two networks (Sahneh et al.,
2013) but the authors investigated an analytic solution to the com-
bination of infection probabilities that allows crossing the epidemic
threshold (Rg > 1). Hence, previous studies highlight the important
role of interlayer feedbacks, where outcomes of dynamics cannot
be extrapolated by analyzing each layer separately. By contrast, we
identify a region of the parameter space within the supercritical
regime (Rg> 1), in which it is possible to understand overall sys-
tem dynamics by integrating the dynamics evaluated for each layer
separately. Additionally, our study advances the theory of diffusion
in interconnected networks as it emphasizes that asymmetry in in-
terlayer infection probabilities can change the expected diffusion
dynamics due to a joint effect with the source of infection on epi-
demic size and probability.

One limitation of our simulation study is that the parameter
values we have selected are somewhat arbitrary. The reason for
that is the lack of empirical data of both within- and between-
population contacts,together with information on infection proba-
bilities. This is a reflection of the recently highlighted more general
challenge of linking models to data in network epidemiology (Pellis
et al., 2015). Such data is needed to corroborate if our two assump-
tions are indeed valid for natural systems, as well as to understand
the parameter ranges that should be the focus of theoretical mod-
eling. We thus emphasize the importance of data collection and
the generation of multi-species data sets.

In conclusion, our findings contribute to a better understanding
of disease dynamics in multihost systems on the one hand, and
advance the theoretical understanding of epidemic spread in mul-
tilayer networks on the other. We hope that this and other stud-
ies which explore mechanistic models of disease spread in multi-
host networks will stimulate empirical studies, ultimately improv-
ing our predictive power of disease spread in multihost systems.

Code accessibility

We provide the complete code in the Figshare online repository
(DOI:10.6084/m9.figshare.2058879).

Competing interests

We have no competing interests.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.


https://doi.org/10.6084/m9.figshare.2058879

244 S. Pilosof et al./Journal of Theoretical Biology 430 (2017) 237-244

Acknowledgements

SP was supported by a James S. McDonnell Foundation 21st
Century Science Initiative — Postdoctoral Program in Complexity
Science-Complex Systems Fellowship Award and by a Fulbright
Fellowship from the U.S. Department of State. We thank Monika
Bohm for helpful comments on previous drafts of this manuscript.
This is publication no. 941 of the Mitrani Department of Desert
Ecology.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.jtbi.2017.07.020

References

Antonovics, J., Hood, M., Partain, J., 2002. The ecology and genetics of a host shift:
microbotryum as a model system. Am. Nat. 160 (S4), S40-S53. doi:10.1086/
342143.

Balcan, D., Colizza, V., Gongalves, B., Hu, H., Ramasco, ].J., Vespignani, A., 2009. Mul-
tiscale mobility networks and the spatial spreading of infectious diseases. Proc.
Natl. Acad. Sci. U. S. A. 106 (51), 21484-21489. doi:10.1073/pnas.0906910106.

Bansal, S., Grenfell, B.T., Meyers, L.A., 2007. When individual behaviour matters: ho-
mogeneous and network models in epidemiology. ]J. R. Soc. Interf. 4 (16), 879-
891. doi:10.1098/r5if.2007.1100.

Begon, M., Bennett, M., Bowers, R.G., French, N.P,, Hazel, S.M., Turner, J., 2002. A
clarification of transmission terms in host-microparasite models: numbers, den-
sities and areas. Epidemiol. Infect. 129, 147-153.

Begon, M., Hazel, S.M., Baxby, D., Bown, K., Cavanagh, R., Chantrey, ]J., Jones, T., Ben-
nett, M., 1999. Transmission dynamics of a zoonotic pathogen within and be-
tween wildlife host species. Proc. R. Soc. London B 266, 1939-1945. doi:10.1098/
rspb.1999.0870.

Blehert, D.S., Hicks, A.C., Behr, M., Meteyer, C.U., Berlowski-Zier, .B.M., Buckles, E.L.,
Coleman, J.T.H., Darling, S.R., Gargas, .A., Niver, R., Okoniewski, ].C., Rudd, R].,
Stone, W.B., 2009. Bat white-nose syndrome: an emerging fungal pathogen? Sci-
ence 323 (5911), 227. doi:10.1126/science.1163874.

Boccaletti, S., Bianconi, G., Criado, R. del Genio, C.., Gémez-Gardefies, ]J., Ro-
mance, M., Sendifia Nadal, I, Wang, Z., Zanin, M., 2014. The structure and dy-
namics of multilayer networks. Phys. Rep. 544 (1), 1-122. doi:10.1016/j.physrep.
2014.07.001.

Bohm, M., Hutchings, M.R,, White, P.C.L., 2009. Contact networks in a wildlife-
livestock host community: identifying high-risk individuals in the transmission
of bovine TB among badgers and cattle. PLoS ONE 4 (4), e5016. doi:10.1371/
journal.pone.0005016.

Chapman, CA,, Gillespie, T.R., Goldberg, T.L.,, 2005. Primates and the ecology of their
infectious diseases: how will anthropogenic change affect host-parasite interac-
tions? Evol. Anthropol. 14 (4), 134-144. doi:10.1002/evan.20068.

Colizza, V., Vespignani, A., 2008. Epidemic modeling in metapopulation systems
with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251
(3), 450-467. doi:10.1016/j.,jtbi.2007.11.028.

Craft, M.E., Caillaud, D., 2011. Network models: an underutilized tool in wildlife epi-
demiology? Interdiscip. Perspect. Infect. Dis. 676949. doi:10.1155/2011/676949.

Craft, M.E., Hawthorne, P.L., Packer, C., Dobson, A.P.,, 2008. Dynamics of a multihost
pathogen in a carnivore community. . Anim. Ecol. 77 (6), 1257-1264. doi:10.
1111/j.1365-2656.2008.01410.X.

Daszak, P, 2000. Emerging infectious diseases of wildlife - threats to biodiversity
and human health. Science 287 (5452), 443-449. doi:10.1126/science.287.5452.
443,

Dickison, M., Havlin, S., Stanley, H.E., 2012. Epidemics on interconnected networks.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85 (6 Pt 2), 066109. doi:10.1103/
PhysRevE.85.066109.

Dobson, A.P., 2004. Population dynamics of pathogens with multiple host species.
Am. Nat. 164 Suppl 5 (november), S64-78. doi:10.1086/424681.

Fenton, A., Pedersen, A.B., 2005. Community epidemiology framework for classify-
ing disease threats. Emerg. Infect. Dis. 11 (12), 1815-1821. doi:10.3201/eid1112.
050306.

Gire, S.K.,, Goba, A., Andersen, K.G., Sealfon, R.S.G., Park, D.J., Kanneh, L., Jalloh, S.,
Momoh, M., Fullah, M., Dudas, G., Wohl, S., Moses, L.M., Yozwiak, N.L., Win-
nicki, S., Matranga, C.B., Malboeuf, C.M., Qu, J., Gladden, A.D., Schaffner, S.F,
Yang, X. Jiang, P.-P, Nekoui, M. Colubri, A, Coomber, M.R, Fonnie, M.,
Moigboi, A., Gbakie, M., Kamara, FK., Tucker, V., Konuwa, E., Saffa, S., Selluy, ].,
Jalloh, A.A., Kovoma, A., Koninga, J., Mustapha, I, Kargbo, K., Foday, M., Yil-
lah, M., Kanneh, F, Robert, W., Massally, J.L.B., Chapman, S.B., Bochicchio, J.,
Murphy, C., Nusbaum, C., Young, S., Birren, B.W., Grant, D.S., Scheiffelin, J.S., Lan-
der, E.S., Happi, C., Gevao, S.M., Gnirke, A., Rambaut, A., Garry, RF, Khan, SH.,
Sabeti, P.C,, 2014. Genomic surveillance elucidates ebola virus origin and trans-
mission during the 2014 outbreak. Science 345 (6202), 1369-1372. doi:10.1126/
science.1259657.

Goémez, .M., Nunn, CL., Verdd, M., 2013. Centrality in primate-parasite networks
reveals the potential for the transmission of emerging infectious diseases to

humans. Proc. Natl. Acad. Sci. U. S. A. 110 (19), 7738-7741. doi:10.1073/pnas.
1220716110.

Holt, R.D., Dobson, A.P, Begon, M., Bowers, R.G., Schauber, E.M., 2003. Parasite
establishment in host communities. Ecol. Lett. 6 (9), 837-842. doi:10.1046/j.
1461-0248.2003.00501.x.

Keeling, M.J., Eames, K.T.D., 2005. Networks and epidemic models. ]. R. Soc. Interf. 2
(4), 295-307. doi:10.1098/rsif.2005.0051.

Keeling, M.J., Rohani, P., 2008. Modeling Infectious Diseases in Humans and Animals.
Princeton University Press, Princetone, New Jersey.

Keesing, F., Holt, R.D., Ostfeld, R.S., 2006. Effects of species diversity on disease risk.
Ecol. Lett. 9 (4), 485-498. doi:10.1111/j.1461-0248.2006.00885.x.

Kiveld, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A., 2014.
Multilayer networks. J. Complex Netw. 2, 203-271. doi:10.1093/comnet/cnu016.

Langwig, K.E., Frick, W.E, Bried, ].T., Hicks, A.C., Kunz, T.H., Marm Kilpatrick, A., 2012.
Sociality, density-dependence and microclimates determine the persistence of
populations suffering from a novel fungal disease, white-nose syndrome. Ecol.
Lett. 15 (9), 1050-1057. doi:10.1111/j.1461-0248.2012.01829.x.

Newman, M.EJ., 2002a. Random graphs as models of networks. In: Bornholdt, S.,
Schuster, H.G. (Eds.), Handbook of Graphs and Networks: From the Genome to
the Internet. Wiley-VCH Verlag, pp. 34-68. doi:10.1002/3527602755.ch2.

Newman, M.E]., 2002b. Spread of epidemic disease on networks. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 66 (1 Pt 2), 016128. doi:10.1103/PhysReVE.66.016128.

Newman, M.EJ., 2003. The structure and function of complex networks. SIAM Rev.
45 (2), 167-256. doi:10.1137/s003614450342480.

Nugent, G., 2011. Maintenance, spillover and spillback transmission of bovine tuber-
culosis in multi-host wildlife complexes: a new zealand case study. Vet. Micro-
biol. 151 (1-2), 34-42. doi:10.1016/j.vetmic.2011.02.023.

Pastor-Satorras, R., Castellano, C., Van Mieghem, P, Vespignani, A., 2015. Epidemic
processes in complex networks. Rev. Mod. Phys. 87 (3), 925-979. doi:10.1103/
RevModPhys.87.925.

Pellis, L., Ball, F, Bansal, S., Eames, K., House, T., Isham, V., Trapman, P., 2015. Eight
challenges for network epidemic models. Epidemics 10, 58-62. doi:10.1016/j.
epidem.2014.07.003.

Perkins, S.E., Cagnacci, F, Stradiotto, A., Arnoldi, D., Hudson, PJ., 2009. Compar-
ison of social networks derived from ecological data: implications for infer-
ring infectious disease dynamics. J. Anim. Ecol. 78 (5), 1015-1022. doi:10.1111/].
1365-2656.2009.01557.x.

Pilosof, S., Morand, S., Krasnov, B.R., Nunn, C.L., 2015. Potential parasite transmission
in multi-host networks based on parasite sharing. PLoS ONE 10 (3), e0117909.
doi:10.1371/journal.pone.0117909.

Poulin, R., 2007. Evolutionary Ecology of Parasites, second ed. Princeton University
Press, Princetone, New Jersey.

Sahneh, ED., Caterina, S., Chowdhury, EN., 2013. Effect of coupling on the epidemic
threshold in interconnected complex networks: A spectral analysis. In: 2013
American Control Conference doi:10.1109/acc.2013.6580178.

Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., Montesi, D., 2015.
Spreading processes in multilayer networks. IEEE Trans. Network Sci. Eng. 2 (2),
65-83. doi:10.1109/TNSE.2015.2425961.

Saumell-Mendiola, A., Serrano, M.A., Boguiia, M., 2012. Epidemic spreading on in-
terconnected networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86 (2 Pt 2),
026106. doi:10.1103/PhysRevE.86.026106.

Streicker, D.G., Fenton, A., Pedersen, A.B., 2013. Differential sources of host species
heterogeneity influence the transmission and control of multihost parasites.
Ecol. Lett. 16 (8), 975-984. doi:10.1111/ele.12122.

Tompkins, D.M., White, A.R.,, Boots, M., 2003. Ecological replacement of native red
squirrels by invasive greys driven by disease. Ecol. Lett. 6 (3), 189-196. doi:10.
1046/j.1461-0248.2003.00417.x.

VanderWaal, K.L, Atwill, ER., Isbell, LA, McCowan, B., 2013. Linking social and
pathogen transmission networks using microbial genetics in giraffe (giraffa
camelopardalis). ]. Anim. Ecol. 83 (2). doi:10.1111/1365-2656.12137.

VanderWaal, K.L., Atwill, E.R., Isbell, L.A., McCowan, B., 2014. Quantifying microbe
transmission networks for wild and domestic ungulates in kenya. Biol. Conserv.
169, 136-146. doi:10.1016/j.biocon.2013.11.008.

Viana, M., Mancy, R, Biek, R, Cleaveland, S., Cross, P.C., Lloyd-Smith, J.O., Hay-
don, D.T., 2014. Assembling evidence for identifying reservoirs of infection.
Trends Ecol. Evol. 29 (5), 270-279. doi:10.1016/j.tree.2014.03.002.

Walsh, PD., Breuer, T, Sanz, C., Morgan, D., Doran-Sheehy, D., 2007. Potential for
ebola transmission between gorilla and chimpanzee social groups. Am. Nat. 169
(5), 684-689. doi:10.1086/513494.

Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P., 2013. Effect
of the interconnected network structure on the epidemic threshold. Phys. Rev. E
Stat. Nonlin. Soft Matter Phys. 88 (2), 022801. doi:10.1103/PhysReVE.88.022801.

Wang, L.-F,, Eaton, B.T,, 2007. Bats, Civets and the Emergence of SARS. In: Childs, J.E.,
Mackenzie, J.S., Richt, J.A. (Eds.), Wildlife and Emerging Zoonotic Diseases:
The Biology, Circumstances and Consequences of Cross-Species Transmission.
Springer Berlin Heidelberg, pp. 325-344.

Wang, Y., Xiao, G., 2011. Effects of interconnections on epidemics in network of
networks. In: Wireless Communications, Networking and Mobile Computing
(WiCOM), 2011 7th International Conference on, pp. 1-4. doi:10.1109/wicom.
2011.6040146.

Wolfe, N.D., Dunavan, C.P., Diamond, J., 2007. Origins of major human infectious dis-
eases. Nature 447 (7142), 279-283. doi:10.1038/nature05775.


http://dx.doi.org/10.1016/j.jtbi.2017.07.020
http://dx.doi.org/10.1086/342143
http://dx.doi.org/10.1073/pnas.0906910106
http://dx.doi.org/10.1098/rsif.2007.1100
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0004
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0004
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0004
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0004
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0004
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0004
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0004
http://dx.doi.org/10.1098/rspb.1999.0870
http://dx.doi.org/10.1126/science.1163874
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1371/journal.pone.0005016
http://dx.doi.org/10.1002/evan.20068
http://dx.doi.org/10.1016/j.jtbi.2007.11.028
http://dx.doi.org/10.1155/2011/676949
http://dx.doi.org/10.1111/j.1365-2656.2008.01410.x
http://dx.doi.org/10.1126/science.287.5452.443
http://dx.doi.org/10.1103/PhysRevE.85.066109
http://dx.doi.org/10.1086/424681
http://dx.doi.org/10.3201/eid1112.050306
http://dx.doi.org/10.1126/science.1259657
http://dx.doi.org/10.1073/pnas.1220716110
http://dx.doi.org/10.1046/j.1461-0248.2003.00501.x
http://dx.doi.org/10.1098/rsif.2005.0051
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0021
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0021
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0021
http://dx.doi.org/10.1111/j.1461-0248.2006.00885.x
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1111/j.1461-0248.2012.01829.x
http://dx.doi.org/10.1002/3527602755.ch2
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1137/s003614450342480
http://dx.doi.org/10.1016/j.vetmic.2011.02.023
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1016/j.epidem.2014.07.003
http://dx.doi.org/10.1111/j.1365-2656.2009.01557.x
http://dx.doi.org/10.1371/journal.pone.0117909
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0033
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0033
http://dx.doi.org/10.1109/acc.2013.6580178
http://dx.doi.org/10.1109/TNSE.2015.2425961
http://dx.doi.org/10.1103/PhysRevE.86.026106
http://dx.doi.org/10.1111/ele.12122
http://dx.doi.org/10.1046/j.1461-0248.2003.00417.x
http://dx.doi.org/10.1111/1365-2656.12137
http://dx.doi.org/10.1016/j.biocon.2013.11.008
http://dx.doi.org/10.1016/j.tree.2014.03.002
http://dx.doi.org/10.1086/513494
http://dx.doi.org/10.1103/PhysRevE.88.022801
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0044
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0044
http://refhub.elsevier.com/S0022-5193(17)30351-X/sbref0044
http://dx.doi.org/10.1109/wicom.2011.6040146
http://dx.doi.org/10.1038/nature05775

	Asymmetric disease dynamics in multihost interconnected networks
	1 Introduction
	2 Modeling pathogen spread in interconnected networks
	3 Analytic formulation of outbreak size and probability
	3.1 Probability of outbreak in interconnected networks
	3.2 Outbreak size in interconnected networks

	4 Numeric simulations of the spreading process
	4.1 Effect on the probability of an outbreak
	4.2 Effect on outbreak size
	4.3 Limits of the analytic formulation

	5 Discussion
	 Code accessibility
	 Competing interests
	 Funding
	 Acknowledgements
	 Supplementary material
	 References


