Fundamentals of experimental phasing and SAD phasing in *Phaser*

Randy J Read Department of Haematology

Cambridge Institute for Medical Research

X-ray diffraction

Building up a structure factor

R

Effect of phase on electron density

Phasing: Ab initio approaches

- Patterson methods
 - Patterson map shows vectors between atoms
- Direct methods
 - based on statistical relationships between phases
- Both methods work more poorly as the number of atoms increases
 - limit of around 1000 atoms for direct methods, even with atomic resolution data

The Patterson function

- Fourier transform of intensities
- Map of vectors between atoms
 - = superposition of images
- $n^2 n$ off-origin peaks

 Mathematical background: www-structmed.cimr.cam.ac.uk/Course/Convolution/convolution.html

Practical phasing for large molecules

- Need method that works with crystals that diffract to worse than atomic resolution
- Need method that doesn't require finding thousands of atoms at once!
 - divide into problem of finding a few special ("marker") atoms and then using those to work out phase information
 - details depend on nature of the special atoms

Experimental phasing

- Isomorphous replacement (SIR or MIR)
 - "isomorphous" = "same shape"
 - perturb diffraction pattern by adding a few *heavy* atoms
- Anomalous diffraction (SAD or MAD)
 - diffraction pattern perturbed between Bijvoet pairs by a small number of *anomalous scatterers*
- Bootstrap structure determination
 - explain differences in diffraction patterns with a few atoms ("substructure" of more complex structure)
 - solve small substructure by *ab initio* methods

Isomorphous derivative

a

b

Native F_{nat} Heavy atom derivative F_{deriv}

from Gale Rhodes, "Crystallography made crystal clear"

Perturbing diffraction by adding a heavy atom

• Heavy-atom contribution is represented by vector addition to protein structure factor

Deducing the size of the heavy atom contribution to the structure factor

 \mathbf{F}_{PH}

 \mathbf{F}_{P}

 \mathbf{F}_{H}

- $\mathbf{F}_{PH} = \mathbf{F}_P + \mathbf{F}_H$
- $\mathbf{F}_H = \mathbf{F}_{PH} \mathbf{F}_P$
- Typically, half of **F**_H is parallel to **F**_P

•
$$(|\mathbf{F}_{PH}| - |\mathbf{F}_{P}|)^2 \approx \frac{1}{2} |\mathbf{F}_{H}|^2$$

Finding the heavy-atom substructure

- Use the estimate of |F_H| from the isomorphous difference to solve the substructure by Patterson methods or direct methods
 - relatively few heavy atoms
 - heavy atoms are generally far apart compared to resolution of data

Deducing phase information from isomorphous replacement

- Compute F_H from substructure coordinates
- Deduce possible phases from Harker construction

The Harker construction for multiple isomorphous replacement (MIR)

- Two derivatives can give unambiguous phase
 - only in the absence of any errors!
 - measurement
 - heavy-atom model
 - lack-of-isomorphism
 - maximum likelihood!

Lack of isomorphism

- Heavy-atom reagents can perturb crystal
 - change crystal packing
 - change protein conformation
- Commonly accompanied by change in cell dimensions

The Harker construction with errors

 Account for measurement errors in native structure factor

 Account for measurement errors in native structure factor

 Account for errors in heavy-atom model

 Account for combined effect of measurement errors, lack of isomorphism and errors in heavy-atom model

Likelihood as function of heavy atom model

Likelihood as function of lack-ofisomorphism error

SAD: single-wavelength anomalous diffraction

- Most popular way to solve structures by experimental phasing (over 70% and rising)
- Can be done with intrinsic S and CuK α X-rays
- SAD phasing theory is very good
- Easy to automate
- Can be very fast
 - Can be done from single dataset
 - no lack of isomorphism
- May need multiple crystals
 - and careful data processing

Anomalous scattering

- Anomalous scattering is due to the electrons being tightly bound (particularly in K & L shells)
- In classical terms, the electrons scatter as though they have resonant frequencies

Driven Mechanical Oscillator

MIT Physics Lecture Demonstration Group

https://www.youtube.com/watch?v=aZNnwQ8HJHU

Anomalous scattering as a function of wavelength: $f = f_0 + f' + i f''$

Diffraction with anomalous scatterers

• SAD: single-wavelength anomalous diffraction

Diffraction with anomalous scatterers

• SAD: single-wavelength anomalous diffraction

Harker construction for SAD phasing

Intuitive understanding of SAD phasing

Intuitive understanding of SAD phasing

Total likelihood is integral of the product of the two distributions under the black circle

SAD log-likelihood gradient (LLG) map

- Compute derivative of log-likelihood with respect to heavy atom structure factor
- Fourier transform gives map of where likelihood target would like to see changes in anomalous scatterer model
- Very sensitive to minor sites
 - picks up sites identified as water molecules in refined structures determined by halide soaks
- Used to improve substructure determination in phenix.hyss (Tom Terwilliger, Gabór Bunkóczi)
- http://www.phaser.cimr.cam.ac.uk/index.php/Tutorials
 - tutorial with data for lysozyme iodide soak

Combining MR and SAD

- CuK α data to 1.9Å on hen egg-white lysozyme
 - can't find sulfurs with HySS or SHELXD
- Solve by MR with goat alpha-lactalbumin (40% identical)
- Use MR model as "substructure" for SAD
 - look for S atoms in LLG map (finds all 10 S, 5-9 Cl⁻)
 - phases automatically combine MR and SAD
- Automated fitting with density-modified map
 - tutorial with these data is available

Availability of Phaser SAD phasing

- Available in CCP4 and Phenix
 - part of ccp4i Phaser-EP pipeline in CCP4
 - standalone SAD phasing in ccp4i2 and CCP4cloud
 - part of AutoSol pipeline in Phenix

Background information

- "*Phaser* crystallographic software", McCoy, Grosse-Kunstleve, Adams, Winn, Storoni & Read (2007), *J. Appl. Cryst.* 40, 658-674.
 - plus papers cited here
- "Liking likelihood", Airlie J. McCoy (2004), *Acta Cryst. D***60**, 2169-2183.
- <u>http://www.phaser.cimr.cam.ac.uk/index.php</u>
- <u>http://www.phaser.cimr.cam.ac.uk/index.php/Tutorials</u>
- <u>http://www-structmed.cimr.cam.ac.uk/Course</u>

Acknowledgements

- Phaser: Airlie McCoy, Gábor Bunkóczi, Rob Oeffner, Kaushik Hatti, Massimo Sammito, Duncan Stockwell
- Phenix: Ralf Grosse-Kunstleve, Nigel Moriarty, Paul Adams, Tom Terwilliger

