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Overview of data reduction process

1. Determine point group and if possible space group
•we need the point group to scale the data
•too low symmetry makes solving the structure 

harder, (though not impossible)  
2. Scale data to make it internally consistent

analyse for:-
•maximum resolution
•radiation damage
•data quality

3. Analyse for pathologies, and estimate amplitude
•twinning
•translational non-crystallographic symmetry

NB I am discussing data from one or a few crystals, not 
from hundreds of crystals, not serial crystallography 



POINTLESS

Sorted Intensities 
in “best” space 

group

AIMLESS

Scaled and 
averaged 
intensities

CTRUNCATE

FREERFLAG

h,k,l F,σ(F)
I, σ(I)

FreeR_flag

Intensities from eg.
DIALS, MOSFLM, XDS

h,k,l I, σ(I) Determine point group (and 
space group?) and consistent 

indexing

Scale symmetry-related 
intensities together

Produce statistics on data 
quality 

Estimate |F| from I
Detect twinning from intensity 

statistics

Complete sphere
Generate FreeR flags

Data Reduction 
workflow in CCP4

Intensities from eg.
DIALS, MOSFLM, XDS

h,k,l I, σ(I)

Intensities from eg.
DIALS, MOSFLM, XDS

h,k,l I, σ(I)



h   k   l M/ISYM BATCH    I   SIGI    IPR SIGIPR

...

-20  12  10  258     4     13      3      7      3

...

-20  12  10  258     5    304     24    322     24

...

-20  12  10  258     6   1072     84   1101     84

...

-20  12  10  258     7    349     27    324     27

Track one reflection through the process

Spot profile

4
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6

7

Spot over 4 images

In MTZ file from Mosflm, ordered 
by image (BATCH) number
Entries spread through file

Summation
integration

Profile fitAfter POINTLESS: Possibly reindexed
observation parts grouped by reduced hkl (sorted)

Symmetry-
related 
observations
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hkl
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Symmetry
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serialLP
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s

3D integration eg DIALS, XDS, 
d*trek

2D integration eg Mosflm, hkl2000



Unmerged file from Pointless, multiple entries for each unique hkl 
(note that we need to know the point group to connect these) 

Merged file, one line for each hkl

scale and mergeAIMLESS

CTRUNCATE

Merged file, one line for each hkl,  intensities and amplitudes F

Optional unmerged output
Partials summed, scaled, outliers rejected 

Infer |F| from I

Full

Partial

Partial
Three symmetry-related 
observations for one 
reflection

In ccp4i2, stored as I(+) and I(-)



How to start from ccp4i2

Run xia2 with DIALS or XDS

Start DUI (or iMosflm)

Follow-on to run data reduction

Just click “Run”



Data reduction task

Import one or more files

Identify dataset
(short names without 

spaces)



Symmetry determination, point group and space group (POINTLESS) 

Indexing in MOSFLM, XDS, DIALS, etc only gives a unit cell, which implies possible lattice 
symmetry, due to the constraints of unit cell dimensions. But to determine the point group 
we need to look at the intensities, as rotational and screw symmetry in real space leads to 
rotational symmetry in reciprocal space

1. from the cell dimensions, determine the maximum possible lattice symmetry, with some 
tolerance (ignoring any input symmetry)
2. for each possible rotation operator, score potentially related observations pairs for agreement 
(correlation coefficients and R-factor)
3. score all possible combinations of operators to determine the point group (point groups from the 
maximum down to P1)
4. score axial systematic absences to detect screw axes, hence space group (note that axial 
observations are sometimes unobserved)

The crystal symmetry may impose constraints on the unit cell dimensions, according to the 
crystal class (the Bravais lattice): cubic, hexagonal/trigonal, tetragonal, orthorhombic, 
monoclinic, or triclinic, + lattice centring P, C, I, R, or F.  For example, in the tetragonal system 
a=b, and all angles = 90°

Note that POINTLESS (and other programs) will find symmetry in the diffraction pattern, but 
this symmetry may or may not be crystallographic (rather than non-crystallographic pseudo 
symmetry)

Stages of space group determination in POINTLESS



Symmetry determination, point group and space group (POINTLESS) 

Only orthorhombic symmetry 
operators are present
High CC, low Rmeas

Analysing rotational symmetry in lattice group P m -3 m

----------------------------------------------

Scores for each symmetry element

Nelmt Lklhd Z-cc    CC        N  Rmeas Symmetry & operator (in Lattice Cell)

1   0.955   9.70   0.97   13557  0.073     identity

2   0.062   2.66   0.27   12829  0.488     2-fold   ( 1 0 1)  {+l,-k,+h}

3   0.065   2.85   0.29   10503  0.474     2-fold   ( 1 0-1)  {-l,-k,-h}

4   0.056   0.06   0.01   16391  0.736     2-fold   ( 0 1-1)  {-h,-l,-k}

5   0.057   0.05   0.00   17291  0.738     2-fold   ( 0 1 1)  {-h,+l,+k}

6   0.049   0.55   0.06   13758  0.692     2-fold   ( 1-1 0)  {-k,-h,-l}

7   0.950   9.59   0.96   12584  0.100 *** 2-fold k ( 0 1 0)  {-h,+k,-l}

8   0.049   0.57   0.06   11912  0.695     2-fold   ( 1 1 0)  {+k,+h,-l}

9   0.948   9.57   0.96   16928  0.136 *** 2-fold h ( 1 0 0)  {+h,-k,-l}

10   0.944   9.50   0.95   12884  0.161 *** 2-fold l ( 0 0 1)  {-h,-k,+l}

11   0.054   0.15   0.01   23843  0.812     3-fold   ( 1 1 1)  {+l,+h,+k} {+k,+l,+h}

12   0.055   0.11   0.01   24859  0.825     3-fold   ( 1-1-1)  {-l,-h,+k} {-k,+l,-h}

13   0.055   0.14   0.01   22467  0.788     3-fold   ( 1-1 1)  {+l,-h,-k} {-k,-l,+h}

14   0.055   0.12   0.01   27122  0.817     3-fold   ( 1 1-1)  {-l,+h,-k} {+k,-l,-h}

15   0.061  -0.10  -0.01   25905  0.726     4-fold h ( 1 0 0)  {+h,-l,+k} {+h,+l,-k}

16   0.060   2.53   0.25   23689  0.449     4-fold k ( 0 1 0)  {+l,+k,-h} {-l,+k,+h}

17   0.049   0.56   0.06   25549  0.653     4-fold l ( 0 0 1)  {-k,+h,+l} {+k,-h,+l}

Stage 1: score individual symmetry operators in the maximum lattice group

Maximum possible lattice symmetry determined from cell dimensions
pseudo-cubic example, a ≈ b ≈ c, angles ≈ 90°

Compare pairs of observations related by each possible rotational operator, using
correlation coefficients and R-factors on normalised intensities |E|2

0.950



CC = 0.94CC = 0.06

Linear correlation coefficient

For equal axes, the correlation coefficient (CC) is the slope of the “best” (least-squares) 
straight line through the scatter plot

CCs have the advantage over eg R-factors in being relatively insensitive to incorrect scales

... but they are more sensitive to outliers

... and CCs need to correlate values that come from the same distribution, ie in this case 
|E|2 rather than I

What score to use?



All possible combinations of rotations are scored to determine the point group. 

Laue Group        Lklhd NetZc Zc+   Zc- CC    CC- Rmeas R- Delta ReindexOperator

= 1    C m m m ***  0.989   9.45  9.62  0.17   0.96  0.02   0.08  0.76   0.0 [h,k,l]

2  P 1 2/m 1       0.004   7.22  9.68  2.46   0.97  0.25   0.06  0.56   0.0 [-1/2h+1/2k,-l,-1/2h-1/2k]

3  C 1 2/m 1       0.003   7.11  9.61  2.50   0.96  0.25   0.08  0.55   0.0 [h,k,l]

4  C 1 2/m 1       0.003   7.11  9.61  2.50   0.96  0.25   0.08  0.55   0.0 [-k,-h,-l]

5       P -1       0.000   6.40  9.67  3.27   0.97  0.33   0.06  0.49   0.0 [1/2h+1/2k,1/2h-1/2k,-l]

6    C m m m 0.000   1.91  5.11  3.20   0.51  0.32   0.34  0.51   2.5 [1/2h-1/2k,-3/2h-1/2k,-l]

7      P 6/m       0.000   1.16  4.59  3.43   0.46  0.34   0.41  0.46   2.5 [-1/2h-1/2k,-1/2h+1/2k,-l]

8  C 1 2/m 1       0.000   1.51  5.15  3.64   0.52  0.36   0.33  0.47   2.5 [1/2h-1/2k,-3/2h-1/2k,-l]

9  C 1 2/m 1       0.000   1.51  5.15  3.64   0.51  0.36   0.33  0.47   2.5 [-3/2h-1/2k,-1/2h+1/2k,-l]

10       P -3       0.000   1.04  4.75  3.71   0.48  0.37   0.40  0.45   2.5 [-1/2h-1/2k,-1/2h+1/2k,-l]

11    C m m m 0.000   2.13  5.23  3.10   0.52  0.31   0.32  0.52   2.5 [-1/2h-1/2k,-3/2h+1/2k,-l]

12  C 1 2/m 1       0.000   1.64  5.25  3.61   0.53  0.36   0.32  0.47   2.5 [-1/2h-1/2k,-3/2h+1/2k,-l]

13  C 1 2/m 1       0.000   1.67  5.27  3.60   0.53  0.36   0.32  0.47   2.5 [-3/2h+1/2k,1/2h+1/2k,-l]

14   P -3 1 m       0.000   0.12  4.00  3.87   0.40  0.39   0.44  0.44   2.5 [-1/2h-1/2k,-1/2h+1/2k,-l]

15   P -3 m 1       0.000   0.14  4.00  3.86   0.40  0.39   0.44  0.44   2.5 [-1/2h-1/2k,-1/2h+1/2k,-l]

16  P 6/m m m 0.000   3.93  3.93  0.00   0.39  0.00   0.44  0.00   2.5 [-1/2h-1/2k,-1/2h+1/2k,-l]

Good scores in symmetry operations which are absent in the sub-group count against that 
group.

Example: C-centred orthorhombic which might been hexagonal

Stage 2: score possible point groups



Clear 21 axis along b Clear 21 axis along cPossible 21 axis along a

There are indications of 21 screw symmetry along all principle axes 
(though note there are only 3 observations on the a axis (h00 reflections))

Fourier analysis of I/σ(I)

... BUT “confidence” in space group may be low due to sparse or missing information
Always check the space group later in the structure solution! 

Stage 3: space group from axial systematic absences 



Note high confidence in Laue group, but 
lower confidence in space group



What can go wrong?

Pseudo-symmetry or twinning (often connected) can suggest a point group symmetry 
which is too high. Careful examination of the scores for individual symmetry operators may 
indicate the truth (the program is not foolproof!)

Potential axial systematic absences may be absent or few, so it may not be possible to 
determine the space group. In that case the output file is labelled with the “space group” 
with no screw axes, eg P2, P222, P622 etc, and the space group will have to be determined 
later

NOTE that the space group is only a hypothesis until the structure has been 
determined and satisfactorily refined

POINTLESS works (usually) with unscaled data (hence use of correlation coefficients), so data 
with a large range of scales, including a dead crystal, may give a too-low symmetry.
In bad cases either just use the first part of the data, or scale in P1 and run POINTLESS on 
the scaled unmerged data



What can go wrong? Pseudo symmetry example

Unit cell 107.99  270.51  155.96   90.00   90.36 90.00

Monoclinic, pseudo-orthorhombic (from NCS), β ≈ 90°

Nelmt  Lklhd  Z-cc    CC        N  Rmeas    Symmetry & operator (in Lattice Cell)

1   0.925   9.13   0.91   14115  0.126     identity
2   0.928   9.16   0.92    6811  0.176 *** 2-fold l ( 0 0 1) {-h,-k,l}, along original k
3   0.659   7.96   0.80   31850  0.252 *   2-fold k ( 0 1 0) {-h,k,-l}, along original l
4   0.678   8.02   0.80    6841  0.245 *   2-fold h ( 1 0 0) {h,-k,-l}, along original h

one 2-fold is stronger than the other two, but not enough to give the right answer 

Laue Group        Lklhd NetZc Zc+   Zc- CC    CC- Rmeas R- Delta ReindexOperator

> 1    P m m m **   0.745   8.33  8.33  0.00   0.83  0.00   0.20  0.00   0.4 [h,l,-k]

= 2  P 1 2/m 1       0.183   1.20  9.14  7.94   0.91  0.79   0.14  0.25   0.0 [h,k,l]

3  P 1 2/m 1       0.030   0.59  8.75  8.16   0.88  0.82   0.16  0.24   0.4 [-l,-h,k]

4  P 1 2/m 1       0.028  -0.32  8.27  8.59   0.83  0.86   0.20  0.21   0.4 [h,l,-k]

5       P -1       0.014   1.01  9.13  8.12   0.91  0.81   0.13  0.24   0.0 [-h,-l,-k]

Best Solution:    point group P 2 2 2

Reindex operator:                   [h,l,-k]                

Laue group probability:             0.745

Systematic absence probability:     0.832

Total probability:                  0.620

Space group confidence:             0.000

Laue group confidence               0.647
Note low confidence in Laue (point) group



What can go wrong? Radiation damage example

Rmerge

Batch
Batch

CC(identity)

CC(2-fold)

Batch

Likelihood P1

Likelihood I2

Severe radiation damage after image 250

RMS deviation

True space group is I2 (== C2), 
i.e. it has  a crystallographic dyad 
(2-fold rotation)

Radiation damage obscures the 
dyad, giving the wrong lower 
symmetry P1

All data

Scores from cumulative batch groups from the 
start, i.e. 1-25, 1-50, 1-75, … etc



Unit cell    74.72 129.22 184.25  90  90  90

This has  b ≈ √3a   so can also be indexed on a hexagonal lattice, 
lattice point group P622 (P6/mmm), with the reindex operator:   h/2+k/2, h/2-k/2, -l

Conversely, a hexagonal lattice may be indexed as C222 in three distinct ways, so there is a 
2 in 3 chance of the indexing program choosing the wrong one

A confusing case in C222: 

Hexagonal axes (black)

Three alternative
C-centred orthorhombic
Lattices (coloured)



Score each symmetry operator in P622

Only the orthorhombic symmetry operators are present

Correlation coefficient on E2 Rfactor (multiplicity weighted)

Nelmt  Lklhd  Z-cc    CC        N  Rmeas    Symmetry & operator (in Lattice Cell)

1   0.808   5.94   0.89    9313  0.115     identity

2   0.828   6.05   0.91   14088  0.141 *** 2-fold l ( 0 0 1)  {-h,-k,+l}

3   0.000   0.06   0.01   16864  0.527     2-fold   ( 1-1 0)  {-k,-h,-l}

4   0.871   6.33   0.95   10418  0.100 *** 2-fold   ( 2-1 0)  {+h,-h-k,-l}

5   0.000   0.53   0.08   12639  0.559     2-fold h ( 1 0 0)  {+h+k,-k,-l}

6   0.000   0.06   0.01   16015  0.562     2-fold   ( 1 1 0)  {+k,+h,-l}

7   0.870   6.32   0.95    2187  0.087 *** 2-fold k ( 0 1 0)  {-h,+h+k,-l}

8   0.000   0.55   0.08    7552  0.540     2-fold   (-1 2 0)  {-h-k,+k,-l}

9   0.000  -0.12  -0.02   11978  0.598     3-fold l ( 0 0 1)  {-h-k,+h,+l} {+k,-h-k,+l}

10   0.000  -0.06  -0.01   17036  0.582     6-fold l ( 0 0 1)  {-k,+h+k,+l} {+h+k,-h,+l}

Z-score(CC)

“Likelihood”



Alternative indexing
If the true point group is lower symmetry than the lattice group, alternative valid but non-
equivalent indexing schemes are possible, related by symmetry operators present in lattice 
group but not in point group (note that these are also the cases where merohedral twinning is 
possible)

eg if in space group P3 (or P31) there are 4 different schemes 
(h,k,l) or (-h,-k,l) or (k,h,-l) or (-k,-h,-l) 

For the first crystal, you can 
choose any scheme

For subsequent crystals, the 
autoindexing will randomly 
choose one setting, and we need 
to make it consistent: POINTLESS
will do this for you by comparing 
the unmerged test data to a 
reference dataset (merged or 
unmerged, or coordinates)

Note that the space group from 
the reference will be assumed to 
be correct



Combining multiple files

Multiple “sweeps” or datasets (eg MAD)

Peak, 3 files

Inflection, 1 file
Remote, 1 file

Use the 
dataset names

or assign files to 
the same dataset



Because of an indexing ambiguity 
(pseudo-cubic orthorhombic), we 
must check for consistent indexing 
between files

Note also some ambiguity with the 
operator [-k,h,l] due to pseudo-
merohedral twinning



Scaling, merging and Data Quality

Put observations on a common scale

Analyse to:-
estimate resolution
check for radiation damage
reject outliers
improve error estimates



Why are reflections on different scales?

(a) Factors related to incident beam and the camera
incident beam intensity; illuminated volume; primary beam absorption

(b) Factors related to the crystal and the diffracted beam
absorption; radiation damage (worse at high resolution) 

(c) Factors related to the detector
miscalibration; corners of fibre-optic tapers for CCDs
Beam-stop shadow etc (Important)

Scaling tries to make symmetry-related and duplicate measurements of a reflection equal, 
by modelling the diffraction experiment, principally as a function of the incident and 
diffracted beam directions in the crystal. This makes the data internally consistent (not 
necessarily correct)

Minimize Φ = Σhl whl (Ihl - ghl<Ih>)2

Ihl l’th intensity observation of reflection h              khl  scale factor for Ihl

<Ih> current estimate of Ih

ghl = 1/khl is a function of the parameters of the scaling model

ghl = g(φ rotation/image number) . g(time) .     g(s)           … other factors
Primary beam s0 B-factor    Absorption



ghl = g(φ rotation/image number) . g(time) .     g(s2)           … other factors
Primary beam s0 B-factor    Absorption

The scale model should reflect the data collection strategy

Data collection strategy should be designed to get good scaling and analysis

high multiplicity (low dose) gives:-
•good scaling
•good outlier rejection
• the opportunity to reject radiation damaged parts of the data without 

losing completeness

Illuminated volume etc

Average radiation damage
(scales up high resolution observations)

Important with big 
crystals at long 
wavelengthexp(-2B(sin θ/λ)2)

For example, in the extreme case of serial crystallography, with small 
rotation (or zero) range per crystal and many crystals, use one scale 
& B-factor / crystal



(a) incident beam intensity: variable on synchrotrons and not normally 
measured. Assumed to be constant during a single image, or at least 
varying smoothly and slowly (relative to exposure time). If this is not 
true, the data will be poor

(b) illuminated volume: changes with φ if beam smaller than crystal

(c) absorption in primary beam by crystal: indistinguishable from (b)

(d) variations in rotation speed and shutter synchronisation. These errors 
are disastrous, difficult to detect, and (almost) impossible to correct 
for: we assume that the crystal rotation rate is constant and that 
adjacent images exactly abut in φ. (Shutter synchronisation errors lead 
to partial bias  which may be positive, unlike the usual negative bias)

Data collection with open shutter (eg with Pilatus or Eiger detector) 
avoids synchronisation errors

Factors related to incident Xray beam



Detector

Rotation axis

X-ray source



Detector

Rotation axis

X-ray source



(e) Absorption in secondary beam - serious at long wavelength 
(including CuKα)

(f) radiation damage - serious. Not easily correctable unless small as 
the structure is changing

The relative B-factor is largely a correction for the average radiation 
damage

Factors related to crystal and diffracted beam



Detector

Rotation axis

X-ray source



H. Kitano et al.  Jpn. J. Appl. Phys., 44, 2 



• The detector should be properly calibrated for spatial distortion 
and sensitivity of response, and should be stable. Problems with 
this are difficult to detect from diffraction data. There are known 
problems in the tile corners of CCD detectors (corrected for in XDS)

• The useful area of the detector should be calibrated or told to the 
integration program

– Calibration should flag defective pixels (hot or cold) and dead 
regions eg between tiles

– The user should tell the integration program about shadows 
from the beamstop, beamstop support or cryocooler (define 
bad areas by circles, rectangles, arcs etc)

Factors related to the detector



Viewing the output statistics (job report from ccp4i2)

1. key 
summary

Warnings:
red, bad;
orange, maybe OK;
green, OK



Viewing the output statistics (job report)

2. main 
summary

Space group 
determination

scores for individual 
symmetry elements 
may detect pseudo-
symmetry …

… or suggest 
twinning

“Table 1”

Download as CSV file



Viewing the output statistics (job report)

3. The most important graphs

Analyses by resolution Analyses by batch

pull-down to change graph

pop out separate 
graph viewer

Analyses for twinning

4. more details in folders, 
closed by default



Export of processed data from I2 for e.g. I1  

Easiest way is to choose ExportMTZ from data reduction task



What should you look at?    What are the questions?

Are there some parts of the data which much worse than the best parts? Maybe these 
should be omitted (subject to completeness)

Should you apply a resolution cutoff?

Measures of quality:

Signal/noise estimates <I/σ(I)> note ≠ <I>/<σ(I)>
but σ(I) estimates are not perfect

Measures of internal consistency:
(1) R-factors

Rmerge = Σ | Ihl - <Ih> | / Σ | <Ih> | a.k.a  Rsym or Rint

traditional overall measures of quality, but increases with multiplicity although the data improves

Rmeas = Rr.i.m.= Σ √(n/n-1) | Ihl - <Ih> | / Σ | <Ih> |

multiplicity-weighted, better (but larger)

Rp.i.m.= Σ √(1/n-1) | Ihl - <Ih> | / Σ | <Ih> |

“Precision-indicating R-factor” gets better (smaller) with increasing multiplicity, ie it estimates the precision of the 
merged <I>

(2) correlation coefficients
Half-dataset correlation coefficient CC1/2:

Split observations for each reflection data randomly into 2 halves, and calculate the correlation coefficient 
between them (essentially comparing the dispersion of individual observations with the dispersion of the data)



What should you look at? Analyses as a function of “batch” (ie image number)

Batch

Mean 
scale

Scale at 
θ = 0

Lattice 1 Lattice 2

Lattice 2 is much weaker in the middle

Two lattices

Five crystals
Mean 
scale

Scale at 
θ = 0

Relative 
B-factor

Scales

Comparison to 
reference calculated 
from model 

R-factor

CC

Good parts (least bad)
CC higher, R-factor lower

B-factor

Batch

Look at :
• scales
• relative B-factor (overall radiation damage)
• cumulative completeness
• maybe comparison to reference

Cumulative 
completeness



We can plot various statistics against resolution to determine where we should cut the data, 
allowing for anisotropy.

What do we mean by the “resolution” of the data? We want to determine the point at which 
adding another shell of data does not add any “significant” information, but how do we 
measure this?

Resolution is a contentious issue, often with referees:

What scores can we use?

Analyses as a function of resolution



What about R-factors?

Resolution

Rmerge

or Rmeas

high

1/d2

low

Where is the cut-off point?

Note that Rmerge

and Rmeas are useful for other 
purposes, but not for deciding 
the resolution cutoff

Note that the crystallographic R-factor behaves quite 
differently: at higher resolution as the data become noisier, 
Rcryst tends to a constant value, not to infinity

Rmerge tends to infinity as data 
gets weaker



1. <I/σ(I)> ≈ <signal/noise>

Resolution

1

2

3

I/σ(I) after averaging

Cut resolution at 
<I/σ(I)> after averaging
Mn(I/sd) = 1 – 2

A reasonably good criterion, but it 
relies on σ(I), which is not entirely 
reliable

Cut here?

0

2. CC1/2

Half-dataset correlation coefficient:
Split observations for each reflection randomly into 
2 halves, and calculate the correlation coefficient 
between them (or equivalent calculation)

1.0

0.5

0

Advantages:
• Clear meaning to values (1.0 is perfect, 0 is no 
correlation) , known statistical properties
• Independent of σ(I)

cut resolution at CC ~= 0.3 – 0.5

Resolution



Anisotropy

Many (perhaps most) datasets are anisotropic
The principal directions of anisotropy are defined by symmetry (axes or planes), except in the 
monoclinic and triclinic systems, in which we can calculate the orthogonal principle directions

We can then analyse half-dataset CCs or <I/σ(I)> in cones around the principle axes, or as 
projections on to the axes

Cones

Projections

<I/σ(I)> in cones
1.91Å

2.15Å

2.00Å

Anisotropic cutoffs are probably a Bad Thing, since it 
leads to strange series termination errors and 
problem with intensity statistics

So where should we cut the data?
Maybe at some compromise point



How should we decide the resolution of a dataset?

I don’t know, but ...

“Best” resolution is different for different purposes, so don’t cut it too soon

• Experimental phasing

• substructure location is generally unweighted, so cut back conservatively to data with 
high signal/noise ratio

• for phasing, use all “reasonable” data

• Molecular replacement: Phaser uses likelihood weighting, but there is probably no gain in 
using the very weak high resolution data

• Model building and refinement: if everything is perfectly weighted (perfect error models!), 
then extending the data should do no harm and may do good 

There is no reason to suppose that cutting back the resolution to satisfy referees will 
improve your model!

Future developments may improve treatment of weak noisy data

Look at CC1/2, <I/σ(I)>,  and anisotropy



Example continued: refinement against real data or simulated data

Rfree

Actual data (F)

Expected <F>

Random F around 
expected value

2.0Å

2.0Å

Half-dataset
CC(Iobs)

CC(Iobs v. calc)

~42%

~58%

Anisotropy

Thick lines:
Half-dataset CC(Iobs)

Thin lines:
CC(Iobs v. calc)

thanks to Garib 
Murshudov

All these indicators are roughly 
consistent that a suitable resolution 
cutoff is around 2.0Å, but that anything 
between 1.9Å and 2.1Å can be justified, 
with current technologies



Improved estimate of σ(I)

Corrected σ’(Ihl)2 = SDfac2 [σ2 + SdB <Ih> + (SdAdd <Ih>)2]

The error estimate σ(I) from the integration program is too 
small particularly for large intensities. A “corrected” value may 
be estimated by increasing it for large intensities such that the 
mean scatter of scaled observations on average equals σ’(I), in 
all intensity ranges

SDfac, SdB and SdAdd are automatically adjusted parameters

Sigma(scatter/SD) and mean(𝝌2) 
should ≈ 1.0 

… but error estimation is 
difficult Should be = 1.0



Reasons for outliers

• outside reliable area of detector (eg behind shadow)

specify backstop shadow, calibrate detector

• ice spots

do not get ice on your crystal!

• multiple lattices

find single crystal

• zingers

• bad prediction (spot not there)

improve prediction

• spot overlap

lower mosaicity, smaller slice, move detector back

deconvolute overlaps

Rejects lie on 
ice rings (red)
(ROGUEPLOT 

in Scala) 

Position of rejects on 
detector

Outliers

Detection of outliers is easiest if the multiplicity is high

Removal of spots behind the backstop shadow does not work well at 
present: usually it rejects all the good ones, so tell integration program 
(eg Mosflm) where the backstop shadow is.



Detecting anomalous signals

The data contains both I+ (hkl) and I- (-h-k-l) observations and we can detect whether there is 
a significant difference between them.

Split one dataset randomly into two 
halves, calculate correlation between 
the two halves or
compare different wavelengths (MAD)

Plot ΔI1 against ΔI2

should be elongated 
along diagonal

Ratio of width of 
distribution along 
diagonal to width 
across diagonal

“RMS correlation ratio”

Correlation 
coefficient vs. 
resolution

Slope > 1.0 means 
that ΔI > σ

Strong 
anomalous signal



Detecting anomalous signals

The data contains both I+ (hkl) and I- (-h-k-l) observations and we can detect whether there is 
a significant difference between them.

Split one dataset randomly into two 
halves, calculate correlation between 
the two halves or
compare different wavelengths (MAD)

Correlation 
coefficient vs. 
resolution

Slope > 1.0 means 
that ΔI > σ

Ratio of width of 
distribution along 
diagonal to width 
across diagonal

Plot ΔI1 against ΔI2

should be elongated 
along diagonal

“RMS correlation ratio”

Weak but useful 
anomalous signal



Intensity statistics

We need to look at the distribution of intensities to detect twinning 

Assuming atoms are randomly placed in the unit cell, then 

<I>(s) = <F F*>(s) = Σj g(j, s)2

where g(j, s) is the scattering from atom j at s = sinθ/λ 

Average intensity falls off with resolution, 
mainly because of atomic motions (B-factors)

<I>(s) = C exp (-2 B s2)
Wilson plot: log(<I>(s)) vs s2

This would be a straight line if all 
the atoms had the same B-factor

For the purposes of looking for crystal 
pathologies, we are not interested in the 
variation with resolution, so we can use 
“normalised” intensities which are 
independent of resolution 



Normalised intensities: relative to average intensity at that resolution

Z(h) = I(h)/<I(s)> ≈ |E|2

<Z(s)> = 1.0 by definition
<Z2(s)> >1.0 depending on the distribution

<Z2(s)> is larger if the distribution of intensities is wider: it is the 2nd moment 
ie the variance (this is the 4th moment of E)

many weak reflections

few weak reflections

Cumulative distribution of Z: p(Z) vs. Z

p(Z1) is the proportion of 
reflections with Z < Z1

Z

1

0 
0 

p(Z)

many weak reflections

few weak reflections

Z
1

p(Z1)

Moment
s

Padilla – Yeates 
L test

MomentMomentMomentMoment

Twinned



Other features of the intensity distribution which 
may obscure or mimic twinning

Translational non-crystallographic symmetry:
whole classes of reflections may be weak 
eg h odd with a NCS translation of ~1/2, 0 0 
<I> over all reflections is misleading, so Z values are inappropriate
The reflection classes should be separated (not yet done)

Anisotropy: <I> is misleading so Z values are wrong
ctruncate applies an anisotropic scaling before analysis

Overlapping spots: a strong reflection can inflate the value of a 
weak neighbour, leading to too few weak reflections

this mimics the effect of twinning

Weak data: the ideal statistics are based on perfect data. 
If the signal/noise ratio is small, then the statistics may falsely 

suggest twinning 



Estimation of amplitude |F| from intensity I

If we knew the true intensity J then we could just take the square root

|F| = √J

But measured intensities I have an error σ(I) so a small intensity may be 
measured as negative.

The “best” estimate of |F| larger than √I for small intensities (<~ 3 σ(I)) to 
allow for the fact that we know than |F| must be positive

[c]truncate estimates |F| from I and σ(I) using the average intensity in the 
same resolution range: this give the prior probability p(J)

French & Wilson 1978

BUT best to use intensities I rather than amplitude F wherever possible



Summary: Questions & Decisions

• Do look critically at the data processing statistics

• What is the point group (Laue group)?
• What is the space group?
• Was the crystal dead at the end?
• Is the dataset complete?
• Do you want to cut back the resolution?
• Is this the best dataset so far for this project?
• Should you merge data from multiple crystals?
• Is there anomalous signal (if you expect one)?
• Are the data twinned?

Try alternative processing strategies: different choices of cutoffs, merging crystals, etc 

test with MR (log-likelihood gain) or refinement (Rfree, map quality)

Data processing is not necessarily something you just do once
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