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Crystallography has been
extremely successful

P Number of Structures Released Annually [ Total Number Available

Protein Data Bank : 160.000 entries

Could it
be any
better?




Four examples for

* Rules that may have been useful in the
past under different circumstances, but are
still commonly used today and result in
wrong decisions

* Concepts resulting from first principles
that would, If applied, deliver the
iInformation to reach the correct decision



Precision versus Accuracy

1% example: Not understanding the
difference between, and the relevance
of precision and accuracy



Precision versus Accuracy

“Quality”
O o ®
@)
...
O
B. Rupp Bio- Accuracy — how different from the true value?
molecular Precision — how different are measurements?
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Numerical example

Repeatedly determine m=3.14... as 3.1, 3.2, 3.0 :
observations have medium precision, medium accuracy

Precision= relative |deviation| from average value= R e

(0+0.1+0.1)/(3.1+3.2+3.0) = 2.2% formulal

Accuracy= average relative |deviation| from true value:

=1/3*(|3.14-3.1| + |3.14-3.2| + |3.14-3.0[)/3.14 = 2.5% o

> > |1, hkl)—T |hkl ||
Rmerge: hkl i=1 -
ZZIi{hkl]

Repeatedly determine 1=3.14... as 2.70, 2.71, 2.72 :

observations have high precision, low accuracy.

Precision= relative |deviation| from average value= Rmerge

(0.01+0+0.01)/(2.70+2.71+2.72) = 0.24% formulal

Accuracy= average relative |deviation| from true value=
1/3*(3.14-2.70 + 3.14-2.71 + 3.14-2.72)/3.14 = 13.7%



Precision versus Accuracy

What Is the “true value“?

> If only random error exists, <accuracy> = <precision>

> if unknown systematic error exists, true value cannot
be found from the data themselves.

> <accuracy> and <precision> differ by the unknown
systematic error

> <precision> can easily be calculated, but not <accuracy>

All data quality indicators estimate precision (only),
but YOU (should) want to know accuracy!



Precision versus Accuracy

>Rules: “The data processing statistics tells me (and the reviewers!)
how good my data are.
To satisfy reviewers, the indicators must be good.”

* Suboptimal result. these rules encourage
- overexposure of crystal to lower R

merge

- data collection “strategy” with low multiplicity
- statistics massaging: throw away potentially useful data

>Concepts:
- Data processing logfiles report the precision (consistency) of the data, not
their accuracy (agreement with truth).

- averaging increases accuracy unless the data repeat systematic errors

- outliers may be correctly (“true positive”) or incorrectly (“false positive”)
identified. Rejections always increase precision, but may decrease
accuracy!



Unmerged versus merged

2" example: confusion by
multitude and properties of
crystallographic indicators



l/o

Confusion — what
do these mean?

CC

1/2

sym

Mn(l/sd) cC

pim
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Unmerged versus merged

Calculating the precision of
unmerged (individual) observations

<l/o > (o from error propagation,
i=individual measurement)

ZZU \hkl)—T Rk
hkl i=1
Rmerge n
2. 2. I |hkl
hkl i=1
> — Z|1 hkl|— T [kl |
R poas="" R ~08/<lo>
> Z I.|hKI|
hkl i=1
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Unmerged versus merged

Calculating the precision of merged data

a) using the vn law of error propagation (wikipedia “weighted arithmetic mean”):

S LS 7kt — Tk
:hkl\/:ii R - ~ 0.8 / <I/O->
PIDIAI P

hkl i=1

b) by comparing averages of randomly selected half-datasets X,Y:

<l/a(l)> R pin

H,K,L | in order of Assignment to Average | of
measurement half-dataset X Y
1,2,3 100 110 120 90 80 100 XY, XY, Y 100 100
1,2,4 50 60 45 60 Y XY X 60 47.5
1,2,5 1000 1050 1100 1200 XYY X 1100 1075

Then calculate Pearson correlation coefficient: CC__on X,Y 1,



Measuring the precision of merged data

with a correlation coefficient

. . __ X (x=®)-Y)
Correlation coefficient “~ 3, -x>0,-,  has clear

meaning and well-known statistical properties

a) Significance of its value can be assessed by Student's
t-test. e.g. CC>0.3 s significant at p=0.01 for n>100;
CC>0.08 is significant at p=0.01 for n>1000

b) From CC,,,, we can analytically estimate CC of the

merged dataset against the true (unknown) intensities

using Cc*z\/ “~u, assuming absence of systematic error.
1/2

CC* = upper Iimitof CC__ /CC___In refinement (data

quality limits model quality): CC__ >CC* implies overfitting

= model agrees better with data than the true signal does
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Unmerged versus merged

Rule: “the quality of the data that | use for refinement can be assessed
by R . -patawithR /R >e.g. 60% are useless.”

rge  mea
* Suboptimal result: Wrong indicator. Wrong high-resolution cutoff.
Wrong data-collection strategy. Strong radiation damage.

merge  me

Concept. - use precision of the merged data if you are interested in the
suitability of the data for MR, phasing and refinement.

e Like R /R

merge’  meas’ pim

approach a constant: R cannot predict model agreement with data

R goes to infinity for weak data, whereas R /R

work free

* <|/o> or <I>/<o> - but how to calculate o; and which cutoff??

« CC,,, CC*-no need for o; normalized; predicts agreement of data

with optimal model
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apples and oranges

3" example: improper
crystallographic reasoning
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apples and oranges

situation: data to 2.0 A resolution
using all data: R,.,=19%, R;_.=24% (overall)

cut at 2.2 A resolution: R._,.=17%, R. _=23%

work

work free

* Rule: “The lower the R-value, the better.”
,cutting at 2.2 A is better because it gives lower R-
values*

* (Potentially) suboptimal result: throwing away data.

* Concept. indicators may only be compared if they

refer to the same reflections.
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apples and oranges

Proper crystallographic
reasoning

.... requires three concepts:
1. Better data allow to obtain a better model
2. A better model has a lower R, .., and a lower R, _.-R,... 9ap

3. Comparison of model R-values is only meaningful when
using the same data

Taking these together, this leads us to the ,paired
refinement technique®. compare models in terms of their
R-values against the same data.

P.A. Karplus and K. Diederichs (2012) Linking Crystallographic Data with
Model Quality. Science 336, 1030-1033.
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Highly controversial?

4" ex.: Resolution of the data

Rules:
1. Worst: cutoff based on R /R

merge meas

2. Better: cutoff based on <I/g(l)> (which value?) merged data

3. Even better, but not good: cutoff based on CC,,, (which value?)
(some people say 50%, others 30-50%; EM “gold standard” is 14.3%) merged data, no

(which value?)

Concepts:

1. “ideally, we would determine the point at which adding the next shell of data is not
adding any statistically significant information” (P. Evans)

2. paired refinement method proper comparison
3. only a good model can extract information from weak data external
4. R, ./R. . of model against noise is ~43% (G. Murshudov) validation

work free

Advice: be generous at the data processing stage, and
decide only at the very end of refinement
Deposit the data up to the resolution where CC,,, becomes insignificant!
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Highly controversial?

Resolution of the model

Rule:

the resolution of the model is the resolution of the data it was
refined against

Concepts:

1. the notion “resolution of a model” is misguided — it answers the
wrong question!

2. resolution of a map (Urzhumtsev et al) is well-defined: how far
are features apart that we can distinguish? depends on Wilson-B

3. better to ask about precision and accuracy of the model
- precision: reproducibility of coordinates
- accuracy: which errors are present? much more important!
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Summary

* Crystallographic decisions are often based on rules of (if
anything) only historical interest. These rules frequently
lead to improper shortcuts being taken

* “make everything as simple as possible, but not simpler”
(attributed to A. Einstein)

* Rules may be needed in expert systems; however,
humans should rather learn, apply and further develop
the underlying concepts
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Thank you for your attention!
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