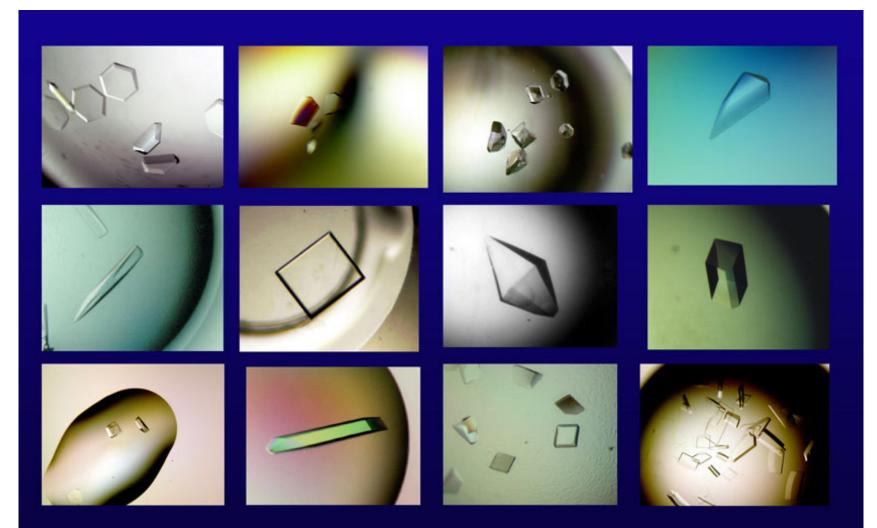
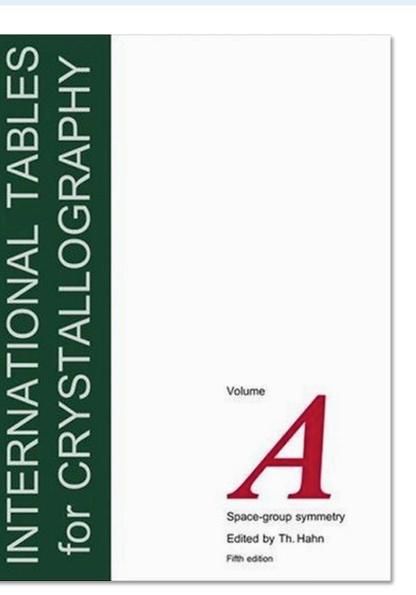
Introduction to symmetry

Andrey Lebedev, CCP4

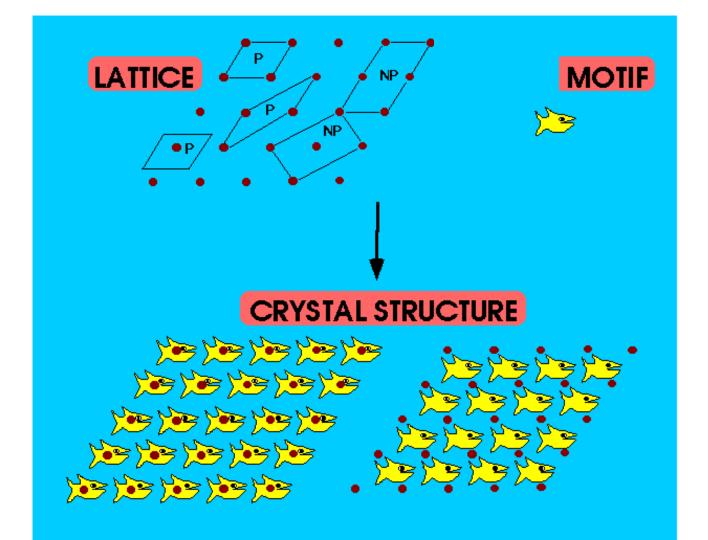


The Reference



Crystal: repeated structural motif

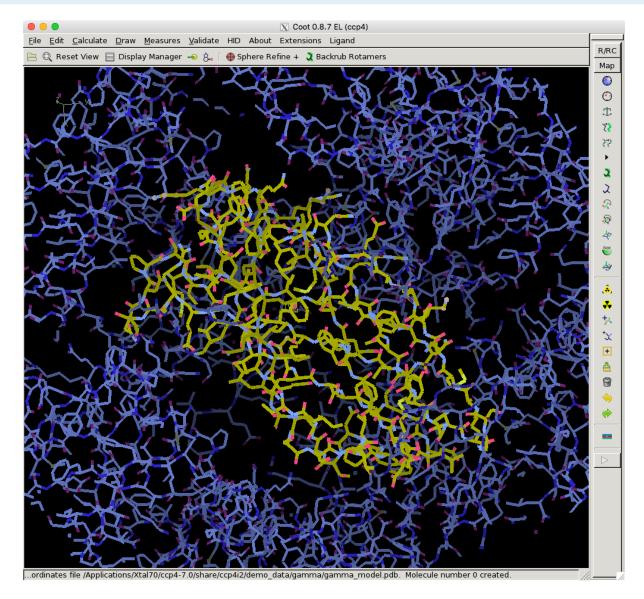
Conventional (constructive) definition of crystal structure.



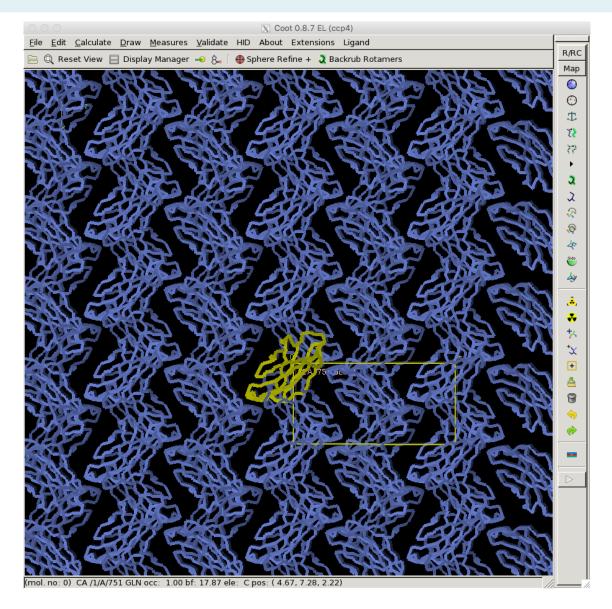
- Example structure (using Coot)
 - examine symmetry operations
 - construct space group
 - assign crystallographic origin
 - identify space group
- Classification of space groups
- Space group symbols
- Symmetry of diffraction pattern
 - point groups
- SG determination in structure solution process

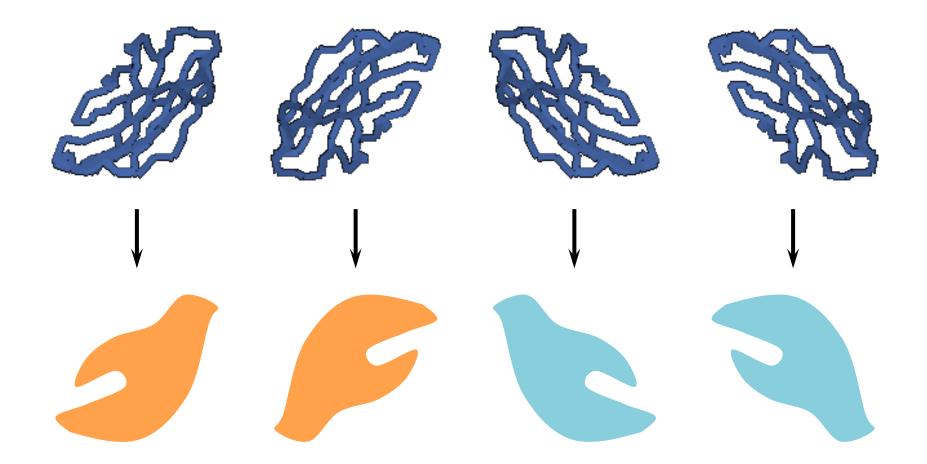
- Example structure (using Coot)
 - examine symmetry operations
 - construct space group
 - assign crystallographic origin
 - identify space group
- Classification of space groups
- Space group symbols
- Symmetry of diffraction pattern
 - point groups
- SG determination in structure solution process

Examine structure in Coot



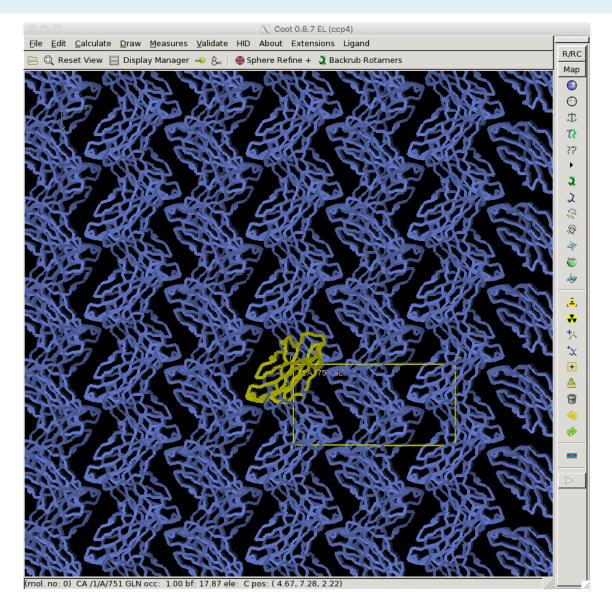
Symmetry view in Coot



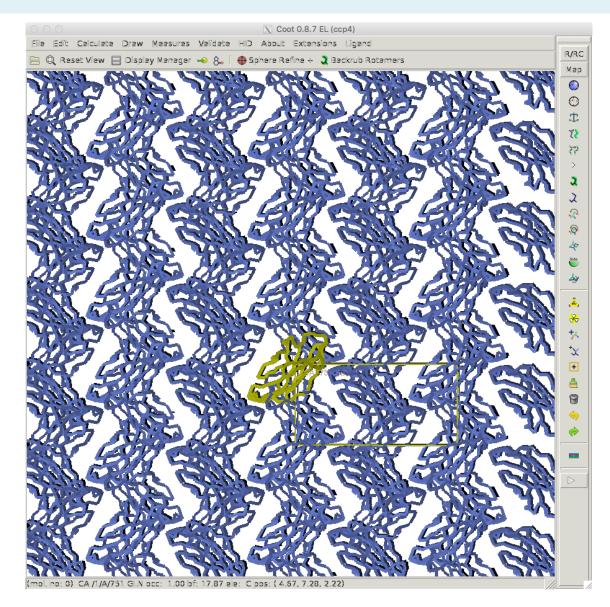


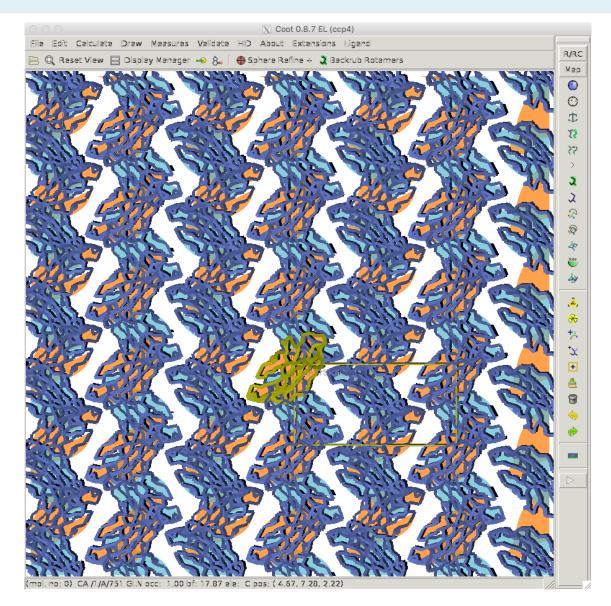
Opposite sides of molecules a denoted with different colours

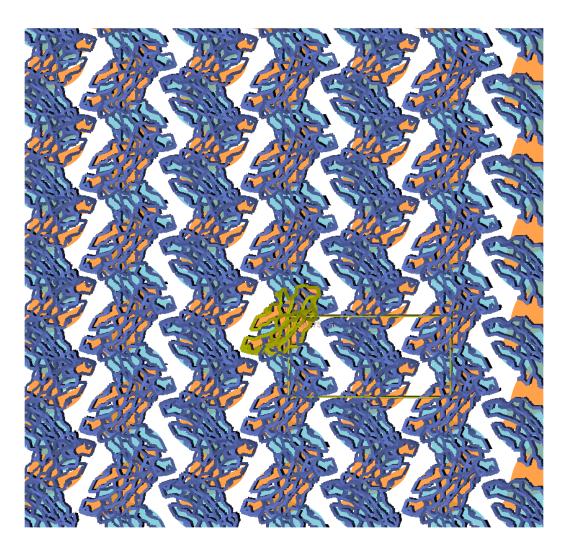
BGU-CCP4 workshop

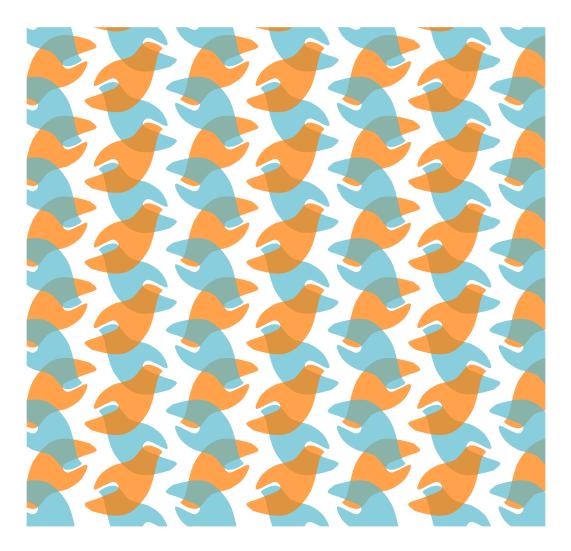


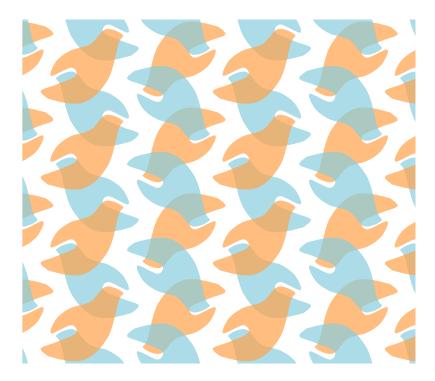
25 February 2020



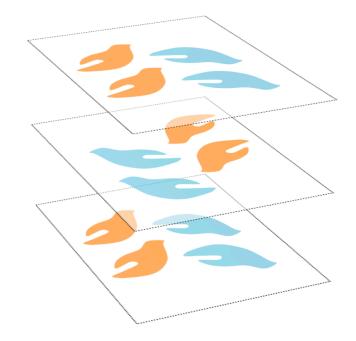




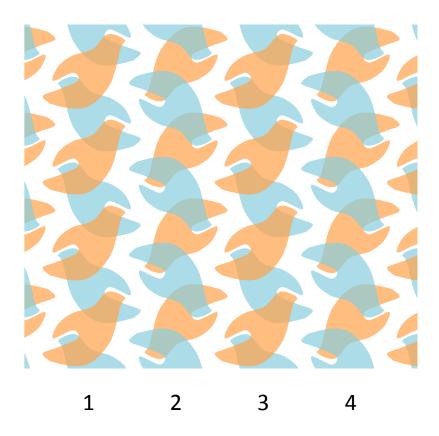




There is a third dimension.



View from the top

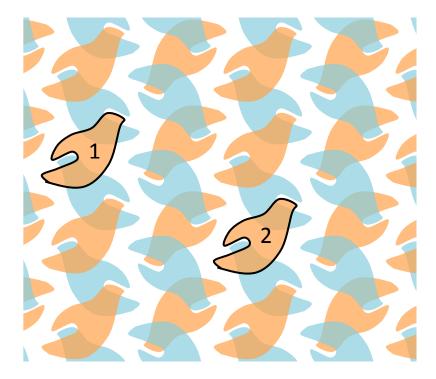


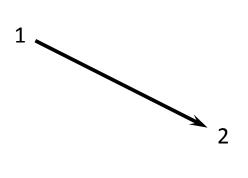
Orange and blue represent opposite sides of molecules

A slice is shown, where

- column 1, 3 : orange-sided molecules on top
- column 2, 4: blue-sided molecules on top
- etc.

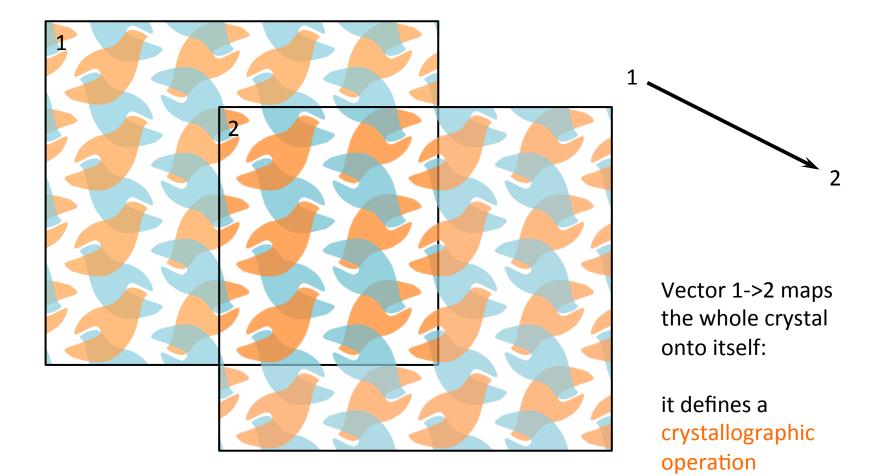
Translation 1



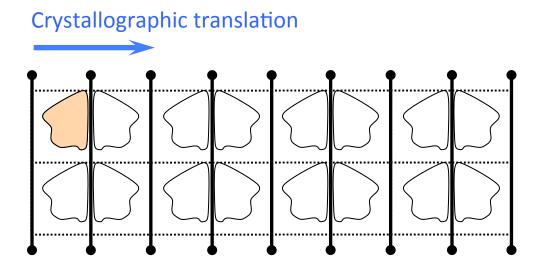


Vector maps 1 -> 2

Translation 1 is global



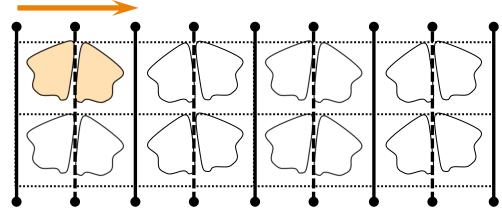
Crystallographic Translation and Pseudo-translation



(symmetry is global and exact)

Crystallographic translation

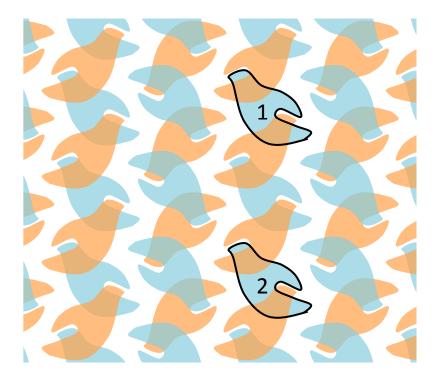
Pseudo-translation

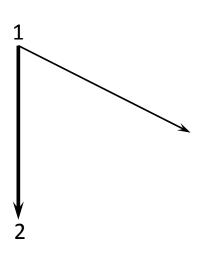


(symmetry is global but approximate)

This is a special case of translational Non-Crystallographic Symmetry (tNCS)

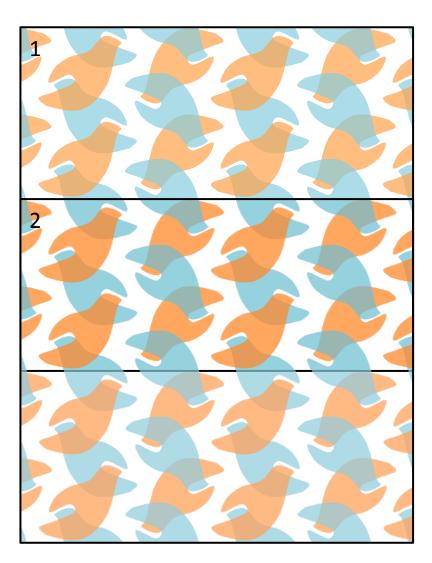
Translation 2

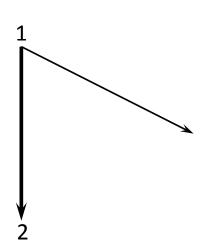




Highlighted vector maps 1 -> 2

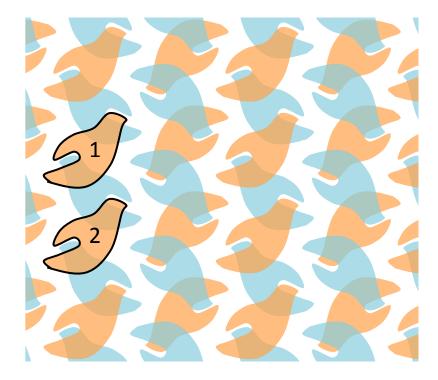
Translation 2 is global





Highlighted vector maps the whole crystal onto itself

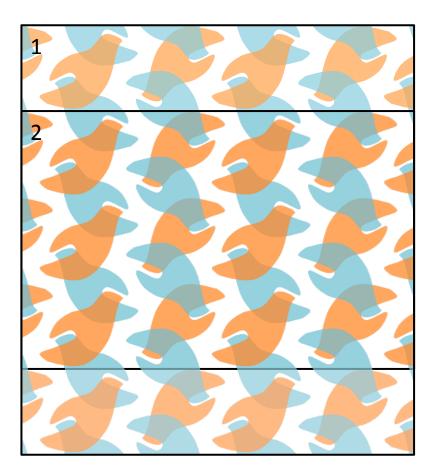
Translation 3

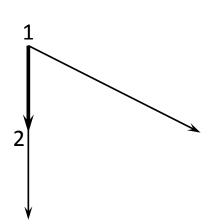


2

Highlighted vector maps 1 -> 2

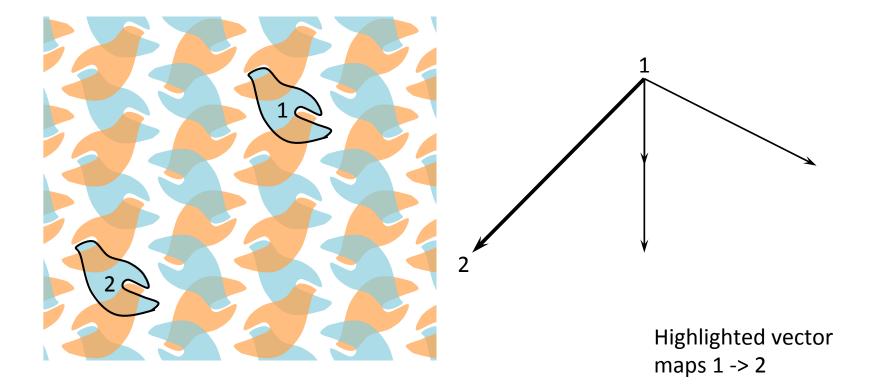
Translation 3 is global



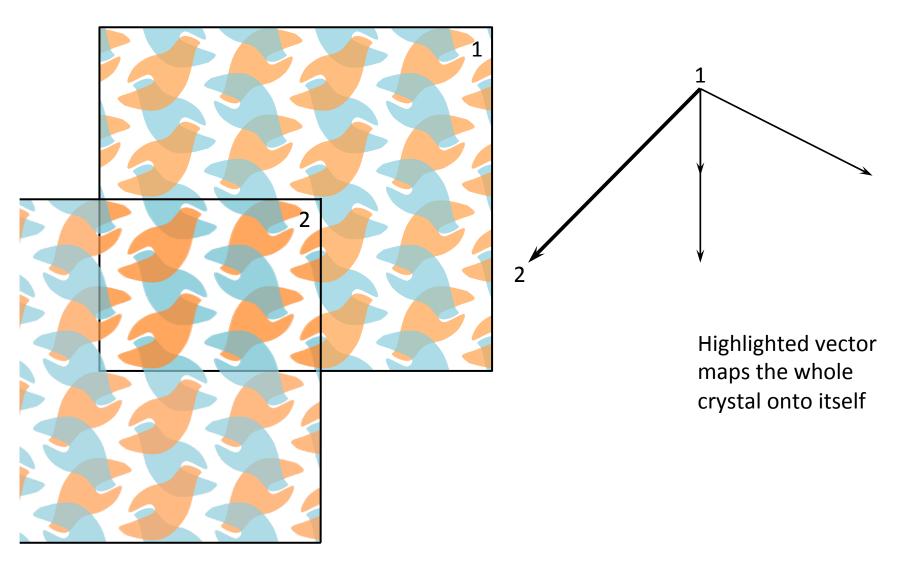


Highlighted vector maps the whole crystal onto itself

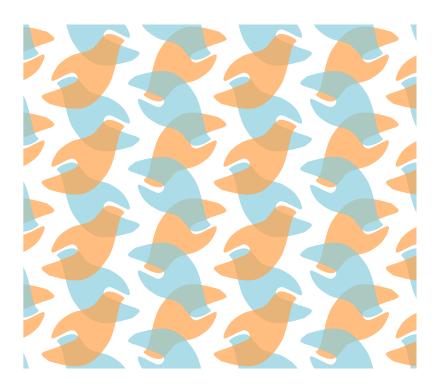
Translation 4

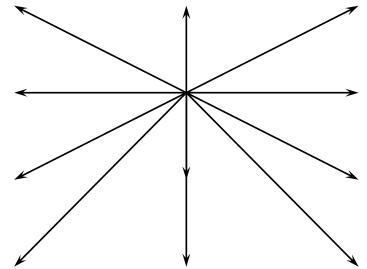


Translation 4 is global



All translations form an infinite group

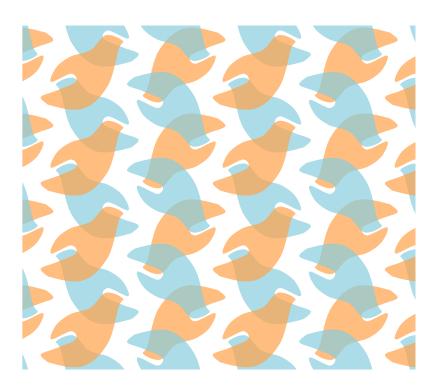


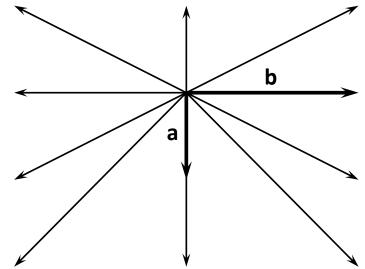


An infinite group (over vector sum):

- reverse translations included
- sum of any two vectors from the group belongs to the group

Basis set

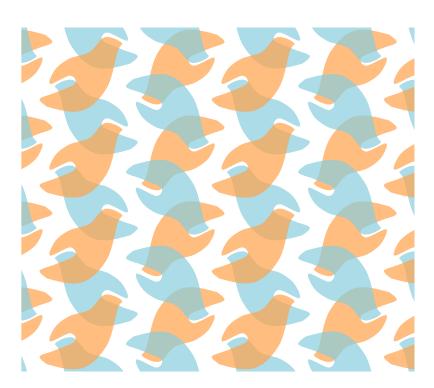


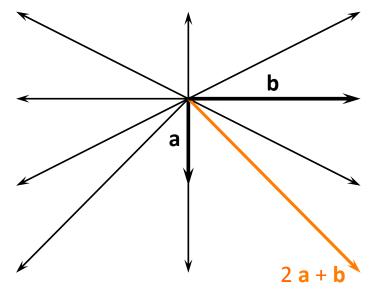


All the translations that map the crystal onto itself can be produced from a basis set: **a**, **b**, **c**

(c is perpendicular to the plane)

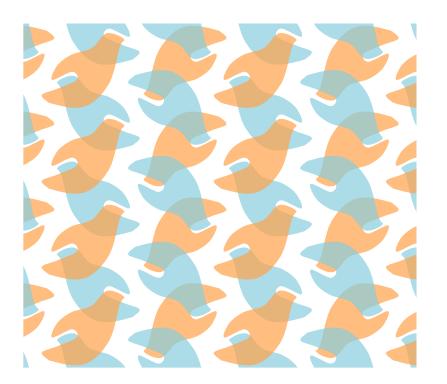
Basis set

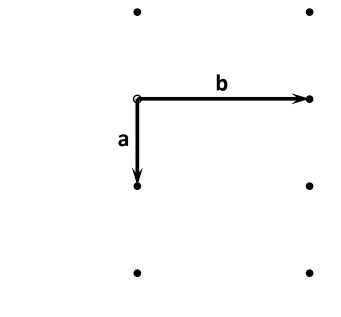




For example, the highlighted vector is expressed as 2 **a** + **b**.

Lattice

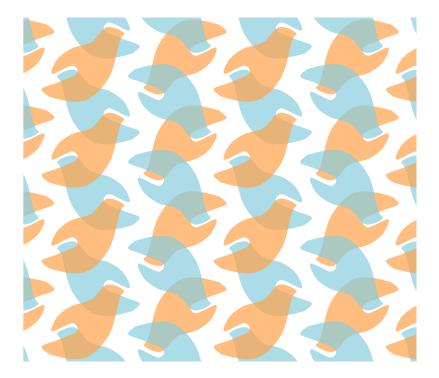


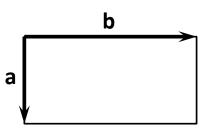


All the crystallographic translations can be represented as a lattice.

Translations live in a separate pace, not connected to crystal (for now)

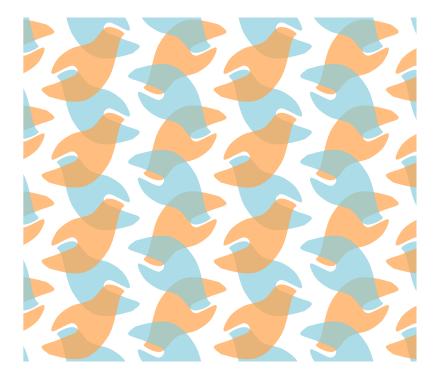
Unit cell

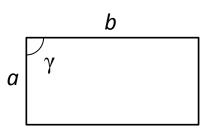




A compact representation of translational symmetry and base vectors.

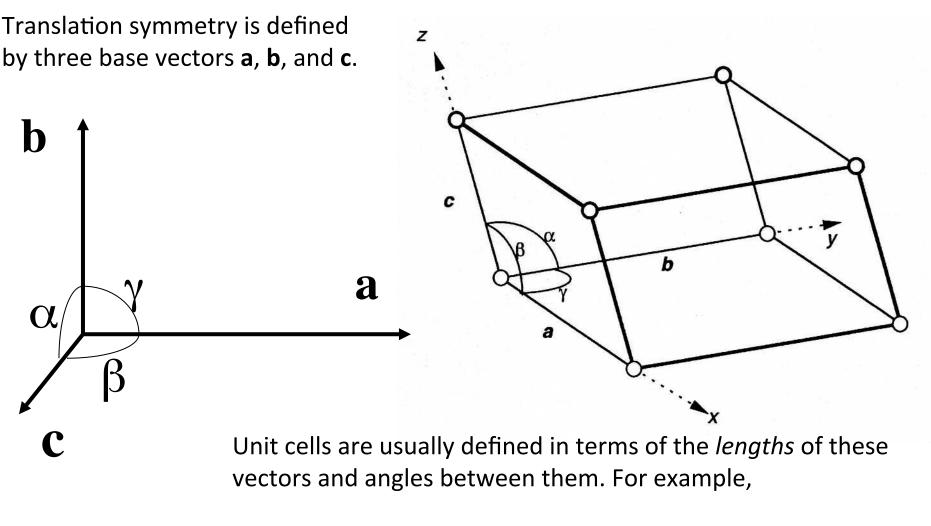
Unit cell





Can be fully characterised by six numbers (the third dimension is not shown here)

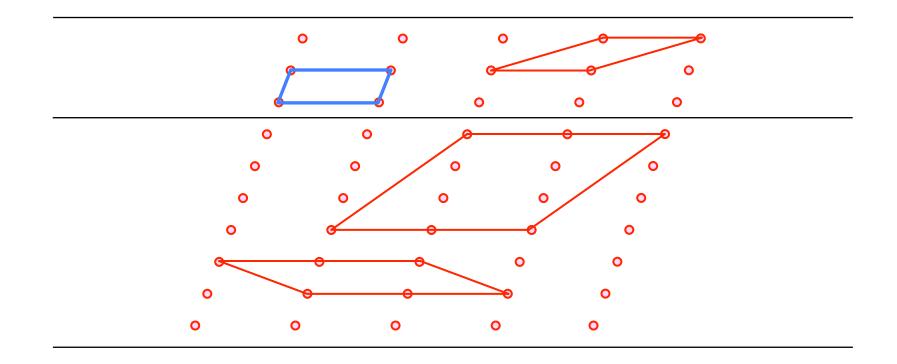
Unit cell parameters (3D view)



a=94.2Å, b=72.6Å, c=30.1Å, α =90°, β =102.1°, γ =90°.

BGU-CCP4 workshop

`Choice of unit cell



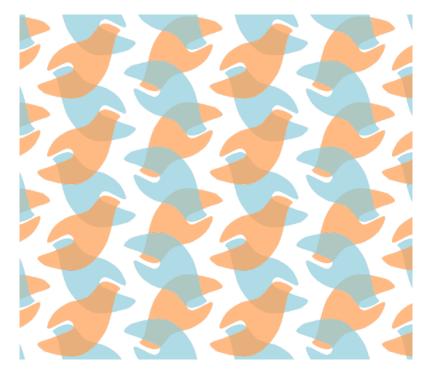
The top two do define all translations = The bottom two do NOT define all translations

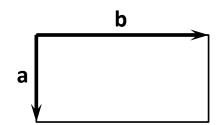
- primitive unit cells
 - non-primitive unit cells

The top left: primitive reduced – the standard for <u>some</u> space groups

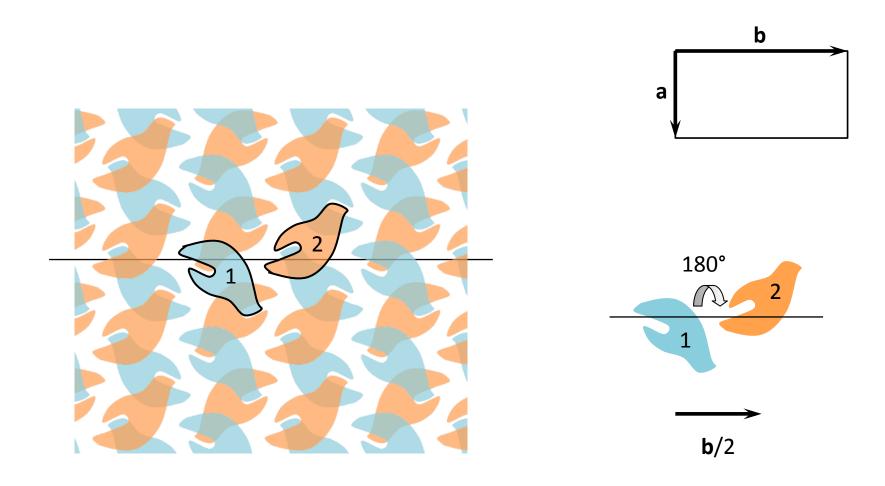
=

Back to example

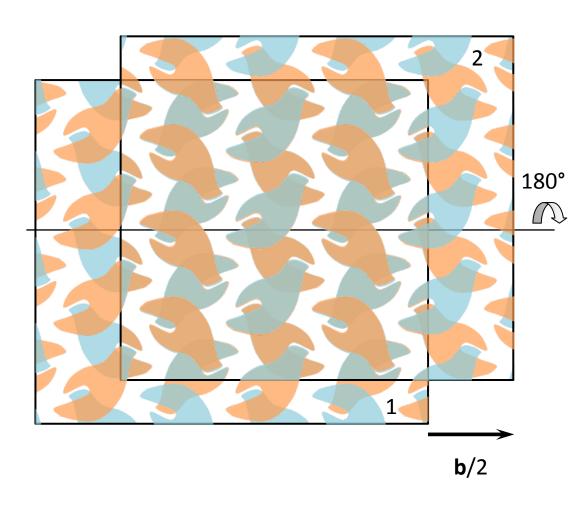


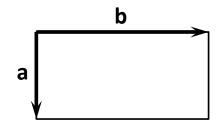


Screw rotation 1



Screw rotation axis





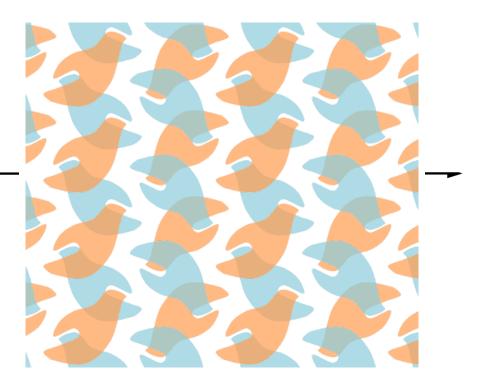
Operation 1->2 maps the whole crystal onto itself:

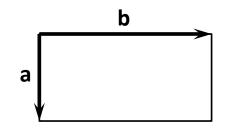
this is a crystallographic operation

The axis is a crystallographic symmetry element,

it can be mapped into the structure

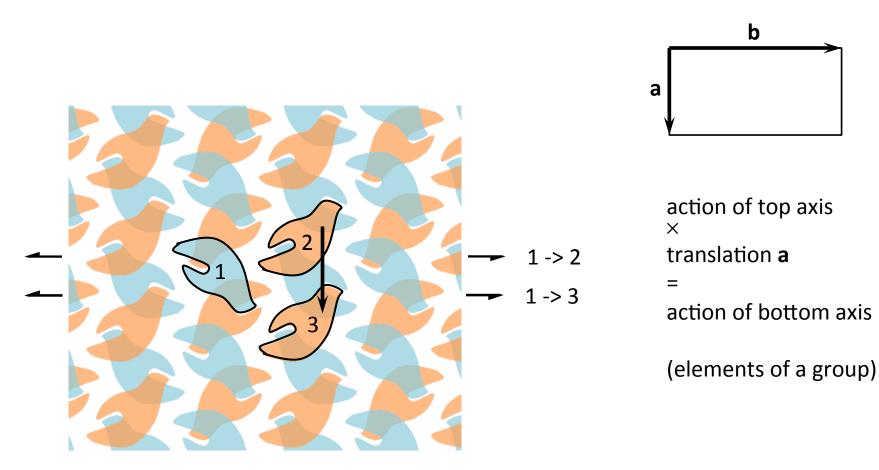
Screw rotation 1 - symbol





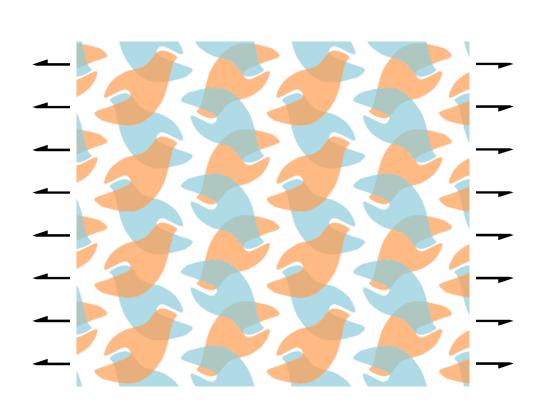
 2_1 (plane of figure): ----

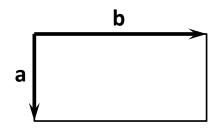
Screw rotation 1 - repeats



The operation on the top axis, combined with translation **a**, can be used to recreate the bottom axis. Here this also means that a rotation/translation offset by $\frac{1}{2}$ **a** is also available.

Screw rotation 1 - repeats

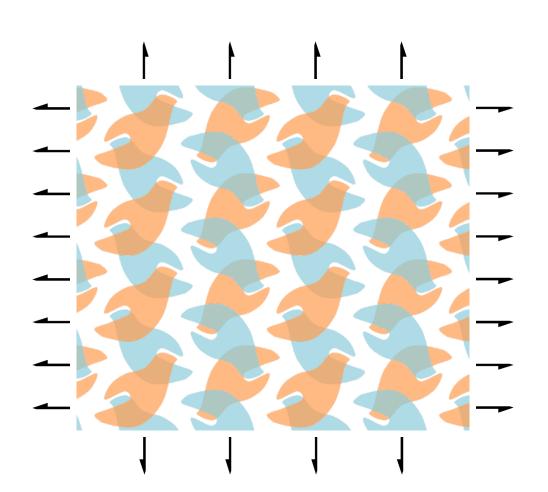


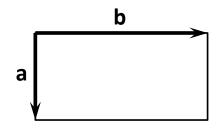


 2_1 (plane of figure): ----

Also repeated in 3d dimension with offset of $\frac{1}{2}\ c$

Screw rotations parallel to a and b

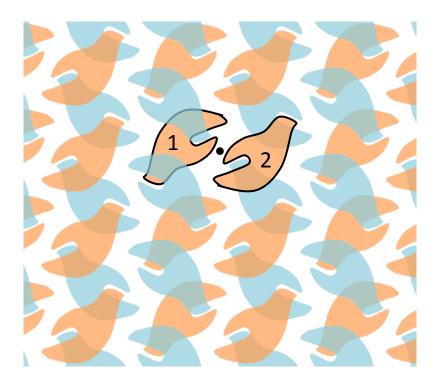


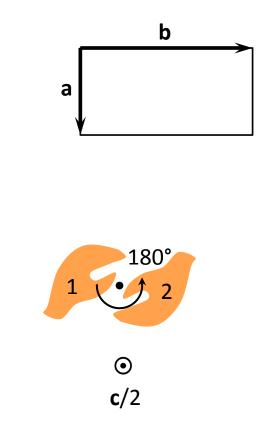


 2_1 (plane of figure): ----

Series of 2₁ axes offset by ¹/₂ unit cell from each other.

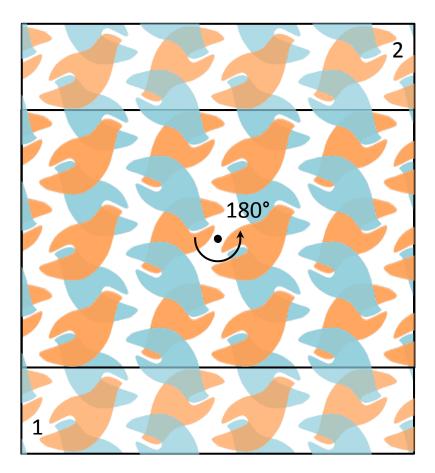
Screw rotation 3 – into plane





A rotation of 180° with a translation of 1⁄2 unit cell from the figure.

Screw rotation 3 is global



a b

Screw rotation 3 maps the whole crystal onto itself:

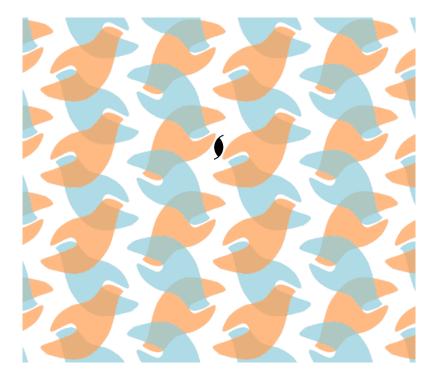
this is a crystallographic operation

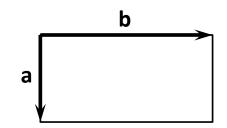
The rotation axis is a crystallographic symmetry element,

it can be mapped into the structure

⊙ c/2

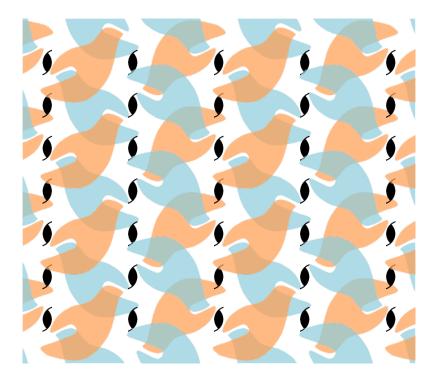
Screw rotation 3 - symbol

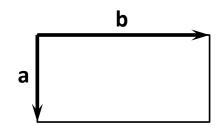




 2_1 (along view):

Screw rotation 3 - repeats

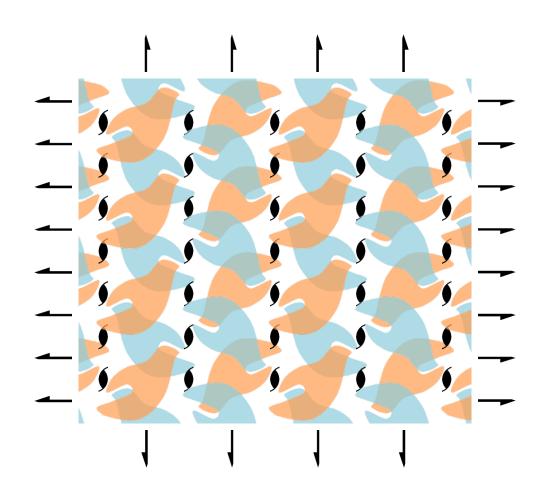


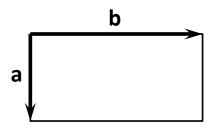


2₁ (along view):

As for the in-plane axes, there are repeated axes into the plane that leave the crystal unchanged.

All axes together

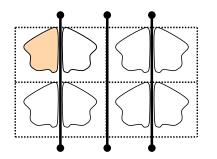




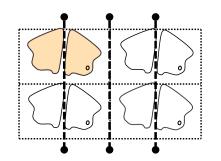
 2_1 (plane of figure): -----

 2_1 (along view):

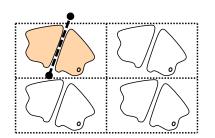
we have built a space group Crystallographic Symmetry, Pseudosymmetry and Non-Crystallographic Symmetry (NCS)



Crystallographic symmetry - symmetry is **global** and **exact**

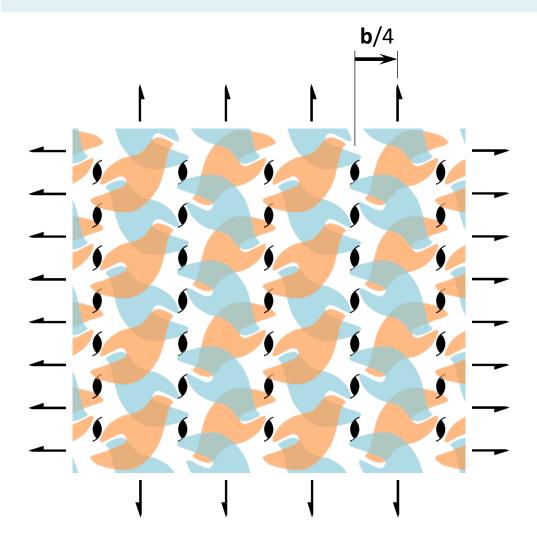


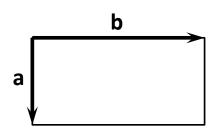
Pseudosymmetry (a limiting case of NCS) - symmetry is global and approximate



Generic Non-Crystallographic Symmetry (NCS): - symmetry is local and approximate

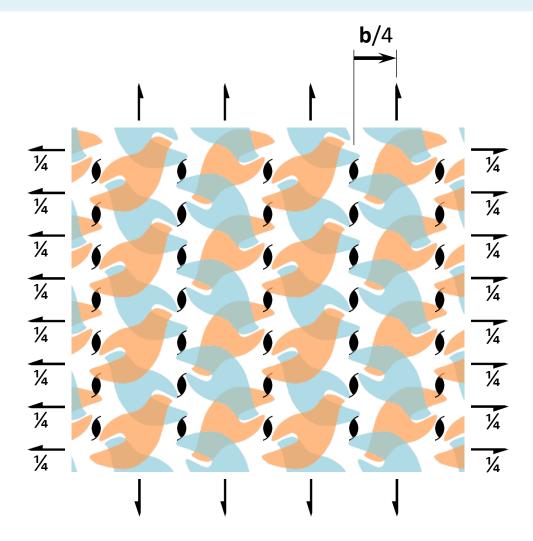
Relative positions of axes

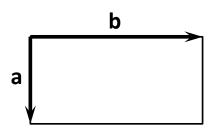




 2_1 (along view):

Relative positions of axes





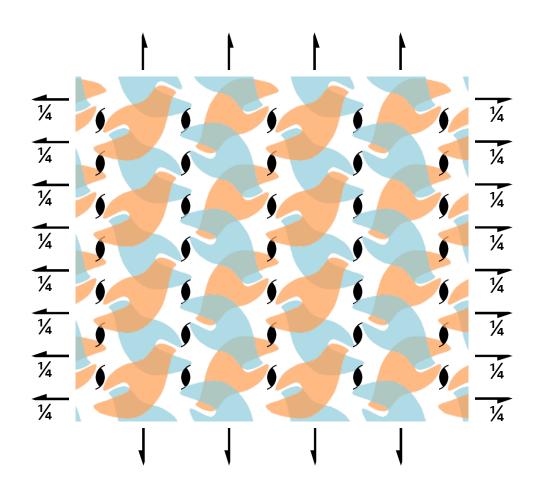
 2_1 (plane of figure): - -

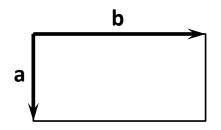
 2_1 (along view):

The adjacent axes running in different directions are offset by ¼ of corresponding base vector.

The horizontal $\frac{1}{4}$ indicates a offset of (n + $\frac{1}{4}$) **c** into the figure.

Relative positions of axes

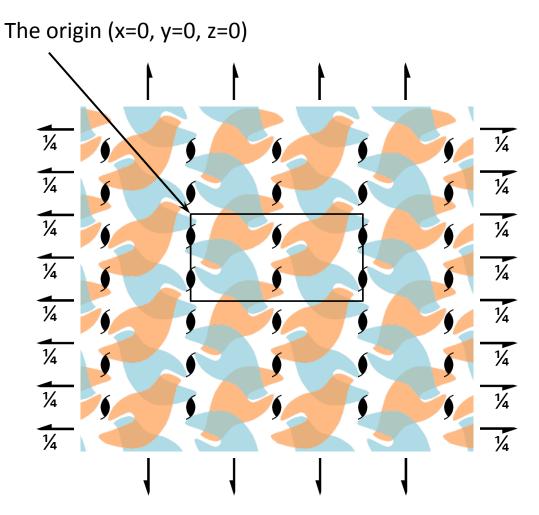




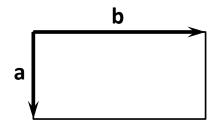
 2_1 (plane of figure): ----

 2_1 (along view):

Choice of origin is a convention. Notation



The origin in this particular space group: is chosen to be equidistant from adjacent axes



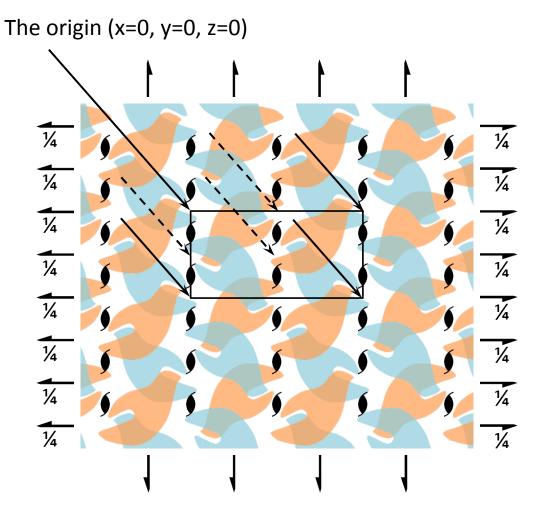
 2_1 (along view):

The unit cell placed on picture with symmetry elements means a choice of origin.

Such a choice is a convention.

25 February 2020

Equivalent and alternative origins



The origin in this particular space group: is chosen to be equidistant from adjacent axes Solid arrows – origins, which are equivalent to the one chosen

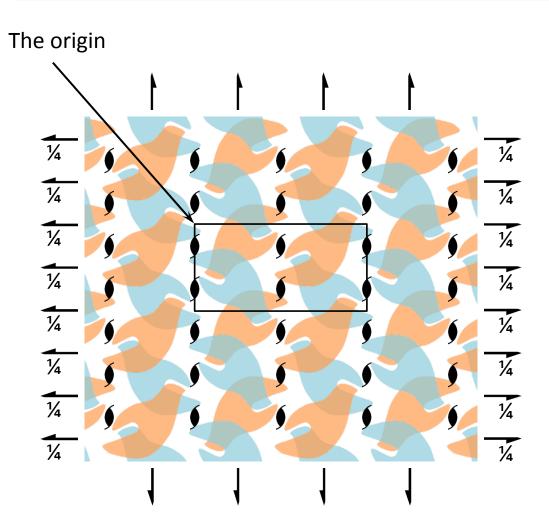
Dashed arrows – alternative origins.

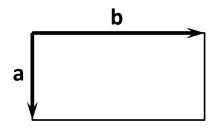
Altogether:

- infinite number of conventional origins
- eight types of
 equivalent origins
 in this example

25 February 2020

Complete picture

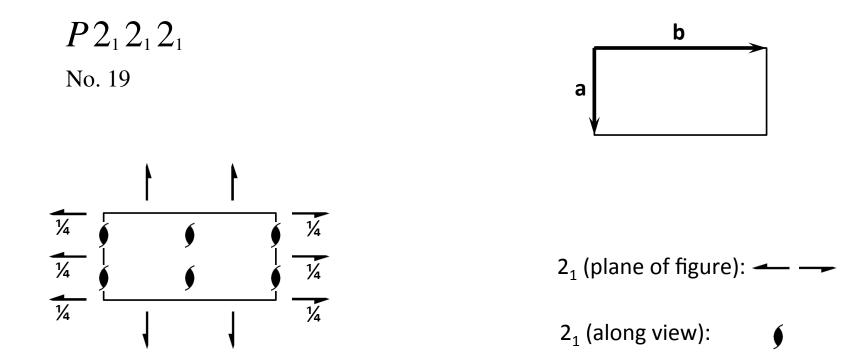




 2_1 (plane of figure): ----

 2_1 (along view):

Compact representation



Scheme with symmetry axes -> space group symbol -> more info in International Tables We will discuss space group symbols a bit later

Presentation in International Tables

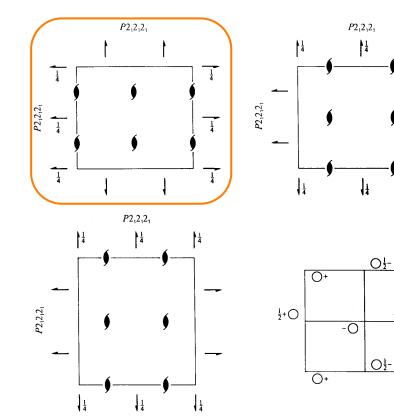
4

1

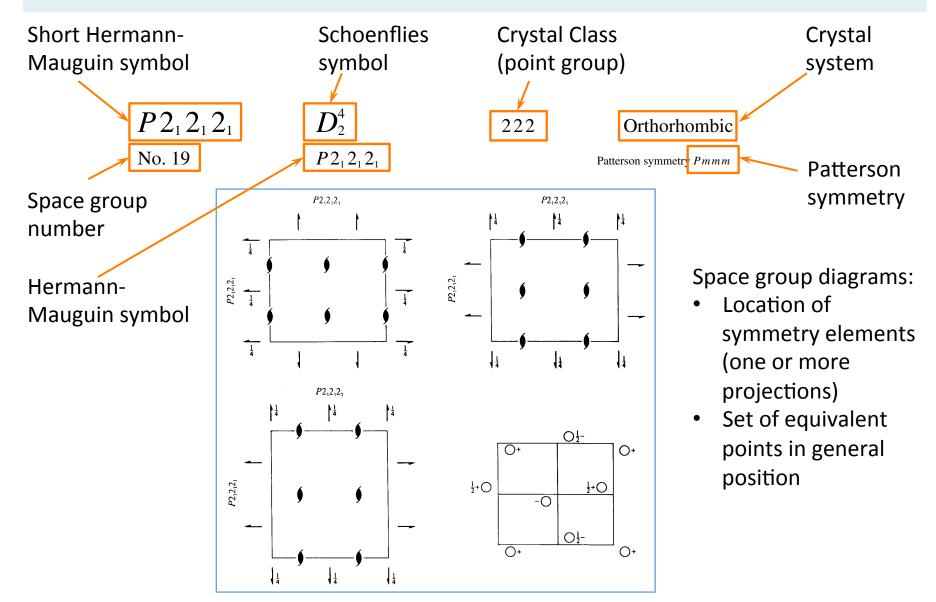
O+

O+

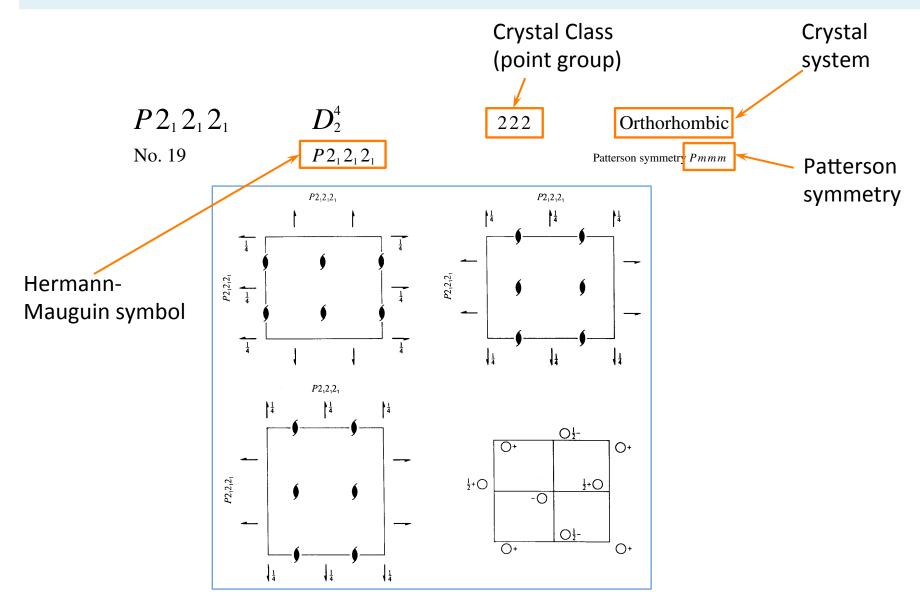
 $\frac{1}{2}$ +O



Presentation in International Tables



Discussed later in this talk



- Example structure (using Coot)
 - examine symmetry operations
 - construct space group
 - assign crystallographic origin
 - identify space group

• Classification of space groups

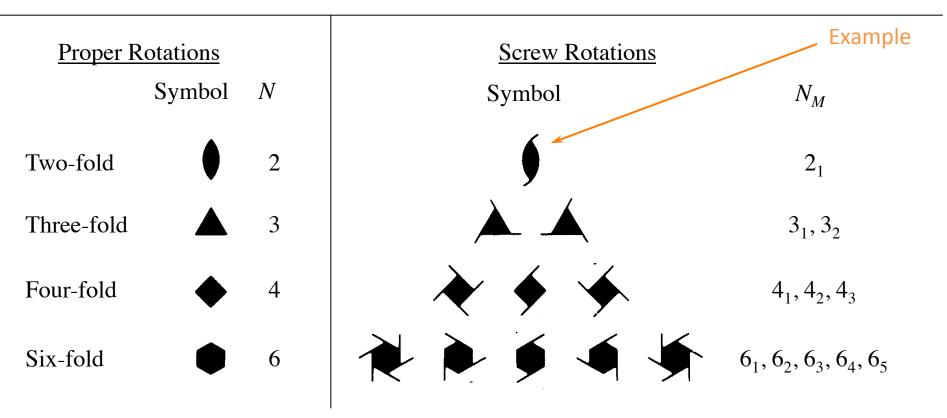
- Space group symbols
- Symmetry of diffraction pattern
 - point groups
- SG determination in structure solution process

Symmetry operations and elements

Apart from the identity and translational symmetry, macromolecular crystals can only contain the following symmetry elements:

Proper rotation: Rotate by 360°/ N.

Screw rotation: Rotate by $360^{\circ}/N$ and translate by (tM/N) where t is the shortest crystallographic translation along the rotation axis



Symmetry elements disallowed by chiral centres

Small molecules also face other symmetry operations

- Mirror plane **m**
- Glide planes a, b, c, n or d: reflection across plane followed by translation parallel to plane along a, b, c, face diagonal or body diagonal, respectively
- Rotation inversion $\overline{1}, \overline{3}, \overline{4}, \overline{6}$: a rotation followed by inversion

Space groups

- All possible combinations of symmetry elements => 230 space groups
- Because protein and nucleic acid molecules are chiral, there are only 65 "biological" space groups.
- Space groups are divided on 7 crystal system based on
 - the presence of symmetry elements of a certain order (6, 4, 3, 2)
 - the number of different orientations of these elements

Crystal Systems

* In macromolecular crystals the symmetry elements are all rotations

Crystal System	Characteristic symmetry elements	Convention
1. Triclinic	Translations only	
2. Monoclinic	2-fold axes, all parallel	along b
3. Orthorhombic	2-fold axes in three perpendicular directions	along a , b and c
4. Tetragonal	4-fold axes, all parallel	along c
5. Trigonal	3-fold axes, all parallel	along c
6. Hexagonal	6-fold axes, all parallel	along c
7. Cubic	3-fold axes in four different orientations	along body diagonals

Crystal Systems

* In macromolecular crystals the symmetry elements are all rotations

Crystal System	Characteristic symmetry elements	Convention
1. Triclinic	Translations only	
2. Monoclinic	2-fold axes, all parallel	along b
3. Orthorhombic	2-fold axes in three perpendicular directions	along a , b and c
4. Tetragonal	4-fold axes, all parallel	along c
5. Trigonal	3-fold axes, all parallel	along c
6. Hexagonal	6-fold axes, all parallel	along c
7. Cubic	3-fold axes in four different orientations	along body diagonals

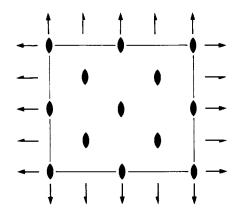
example

Crystal Systems

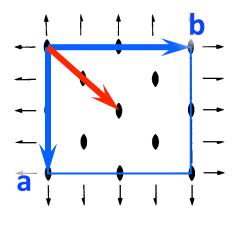
Crystal System		
1. Triclinic	Translations only	
2. Monoclinic	2-fold axes, all parallel	along b
3. Orthorhombic	2-fold axes in three perpendicular directions	along a , b and c
4. Tetragonal	4-fold axes, all parallel	along c
5. Trigonal	3-fold axes, all parallel	along c
6. Hexagonal	6-fold axes, all parallel	along c
7. Cubic	3-fold axes in four different orientations	along body diagonals

C222: an example of a centred cell

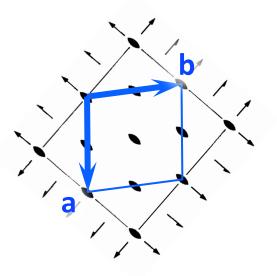
C222 as presented in the International Tables for Crystallography



<u>Standard</u> setting; C means additional translation ½ (**a** + **b**)



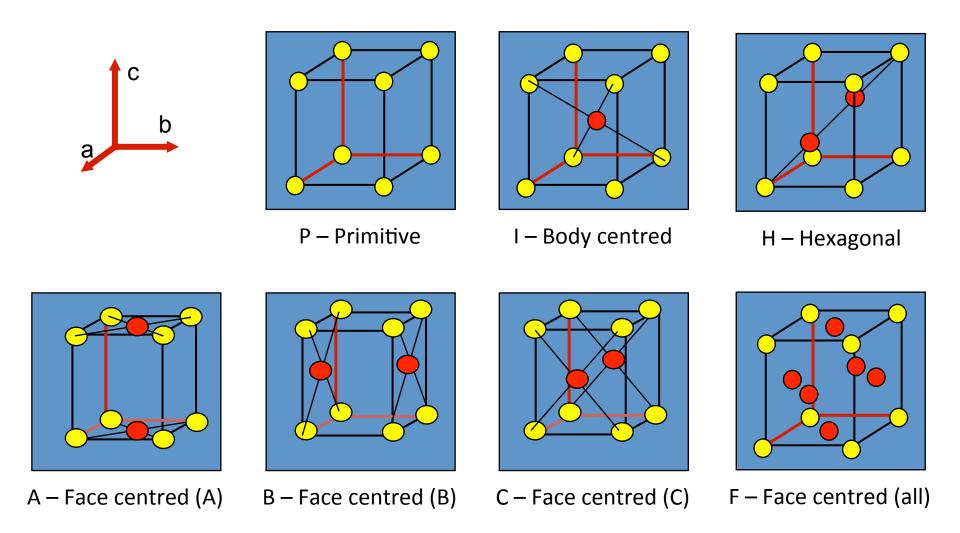
If we were using a primitive cell



2-fold axes are along **a**, **b** and **c** (conventional setting) 2-fold axes are along face diagonals (nonconventional crystal setting)

Centred cells in pictures

Not a natural phenomenon, but just a notion required by convention on direction of axes



Bravais lattices

- 7 crystal systems, combined with some of the centring types (P, C, I, F or H) gives 14 Bravais lattices
 - excluded are impossible combinations (*e.g.* A4)
 - or one of equivalent combinations (*e.g.* C4 and *P*4)

Bravais lattices

Crystal System	Bravais Lattices	
1. Triclinic	1. Primitive (P)	
2. Monoclinic	2. Primitive (P)3. Base-Centered (C)	
3. Orthorhombic	 4. Primitive (P) 5. Base-Centered (C) 6. Body-Centered (I) 7. Face-Centered (F) 	example
4. Tetragonal	8. Primitive (P)9. Body-Centered (I)	
5. Trigonal	10. Primitive (<i>P</i>)	
	11. Rhombohedral (<i>R or H</i>)	
6. Hexagonal	10. Primitive (<i>P</i>)	
7. Cubic	 12. Primitive (P) 13. Body-Centered (I) 14. Face-Centered (F) 	

- Example structure (using Coot)
 - examine symmetry operations
 - construct space group
 - assign crystallographic origin
 - identify space group
- Classification of space groups

• Space group symbols

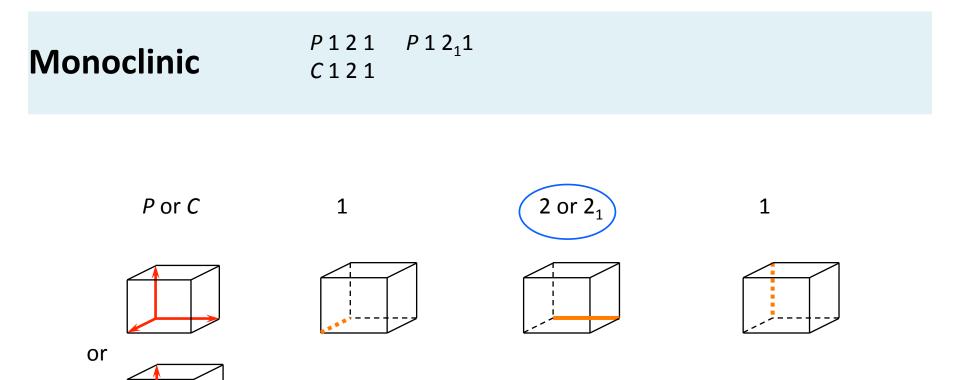
- Symmetry of diffraction pattern
 - point groups
- SG determination in structure solution process

P 1

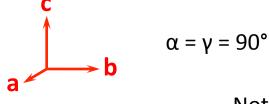
"P" means primitive lattice type

"1" means no symmetry operations except for translations

No constraints on $a, b, c, \alpha, \beta, \gamma$



"1" means no symmetry axes in a given direction "2" or "2₁" means 2-fold axes in a given direction



Note: by convention the 2-fold is along **b** (other settings are sometimes used as well)

Orthorhombic	P 2 2 2 P 2 2 2 C 2 2 2 C 2 2 2 I 2 2 2 F 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
P, C, I or F	2 or 2 ₁	2 or 2 ₁	2 or 2 ₁
or	"2" or "2 ₁ " me	ans 2-fold axes in a giv	ven direction
or	C ↑	L	
or	a	→ b α = β = γ = 90°	

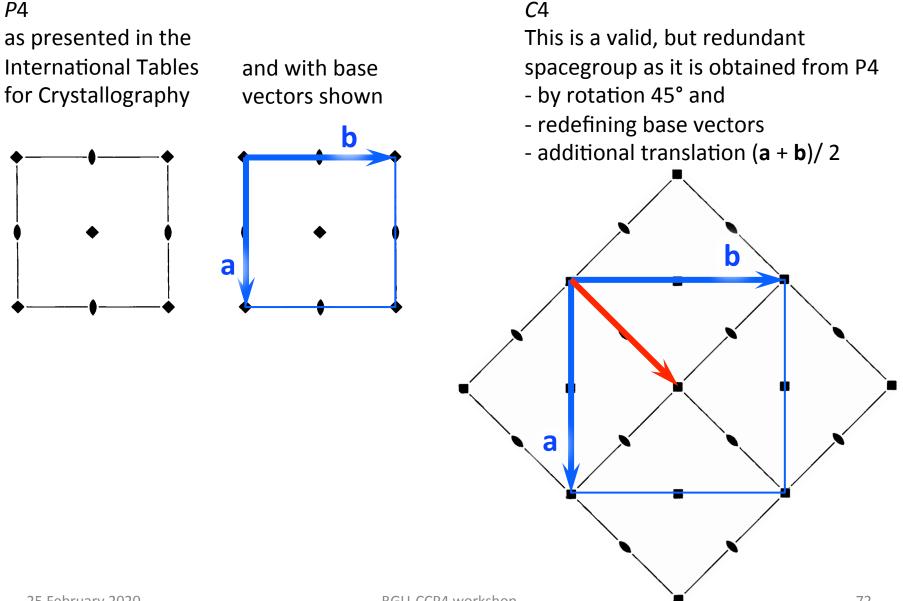
Tetragonal		P 4 ₂ 2 ₁ 2 P 4 ₃ 2 ₁ 2 P 4 ₂ 2 2 P 4 ₃ 2 2	P4 P4 ₁ P4 ₂ P4 ₃
P or I	4 _N	2, 2 ₁ or None	2 or None
or			

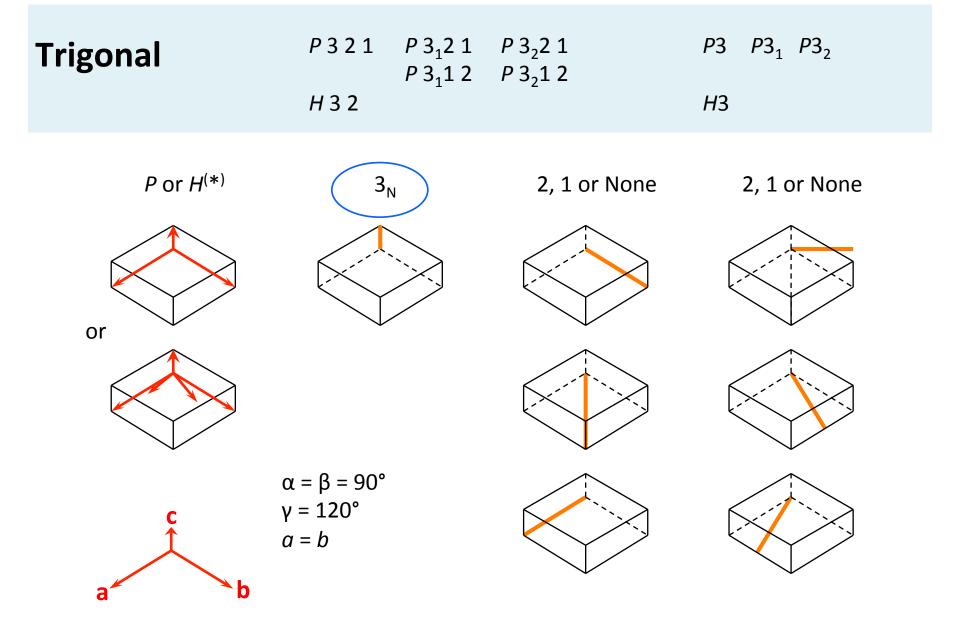
- a $\alpha = \beta = \gamma = 90^{\circ}$ a = b
- $a \equiv b$ due to the 4-fold relating them

All 2-fold axes are also related via 4-fold rotations and either

- all of them are present or
- none of them are present

C4: an example of a redundant space group symbol





^(*) an alternative rhombohedral (*R*) is also used

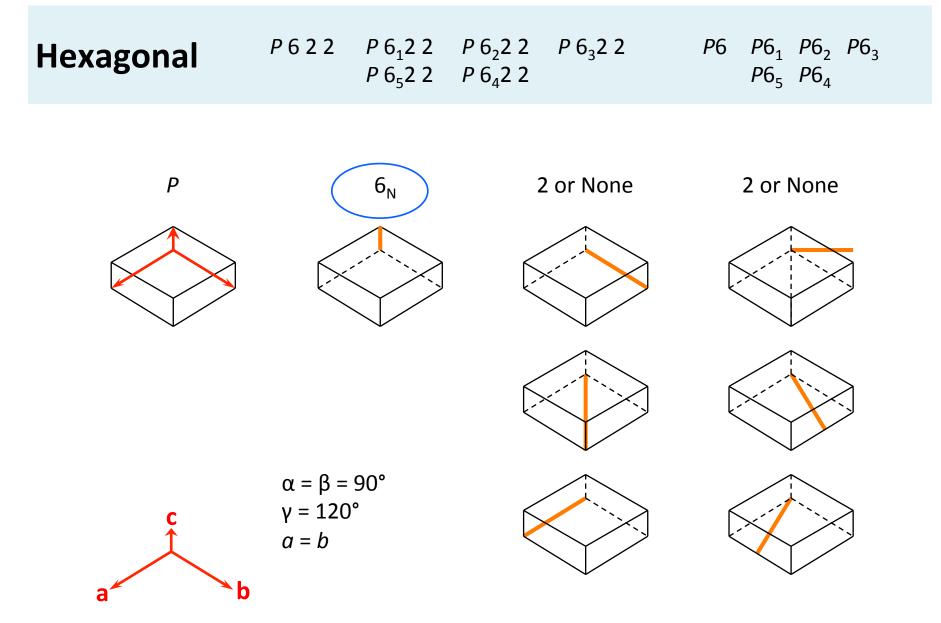
BGU-CCP4 workshop

Ones

P 1	P111
P121	P 2
<u>P411</u>	P 4
P311	P 3
P321	<u>P32</u>
P312	<u>P32</u>

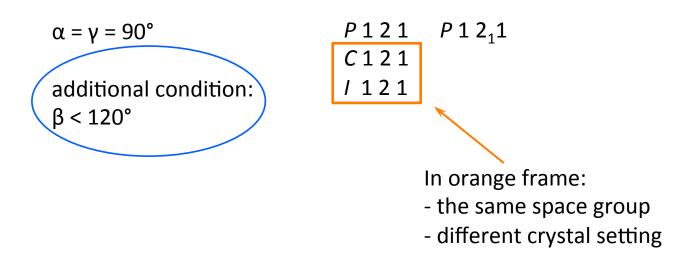
Subscripts

P43212 P 43 21 2 P 4(3) 2(1) 2 P 4₃ 2₁ 2

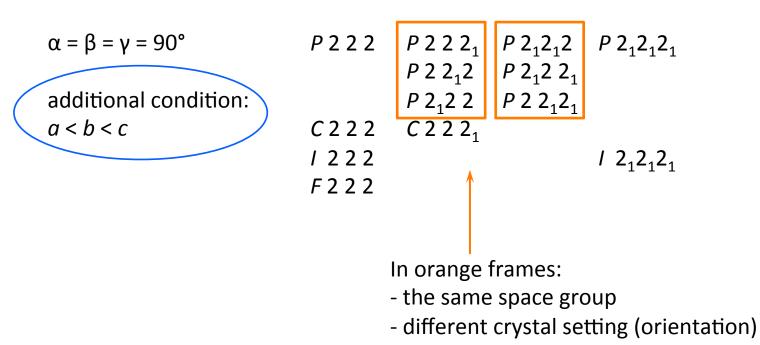


Cubic	P 4 3 2 P 4 ₁ 3 2 I 4 3 2 I 4 ₁ 3 2 F 4 3 2 F 4 ₁ 3 2	P 4 ₂ 3 2 P 4 ₃ 3 2	P 2 3 P 2 ₁ 3 I 2 3 I 2 ₁ 3 F 2 3
P, I or F	$4_{\rm N}$ or $2_{\rm N}$	3	2 or None
or			
or			
a b	$\alpha = \beta = \gamma = 90^{\circ}$ $a = b = c$		

Monoclinic (lattice based setting)

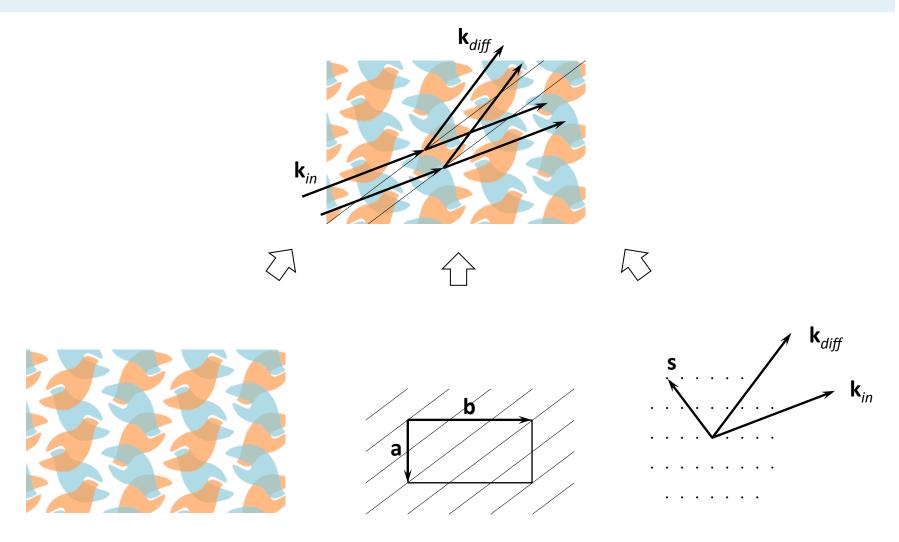


Orthorhombic (lattice based setting)



- Example structure (using Coot)
 - examine symmetry operations
 - construct space group
 - assign crystallographic origin
 - identify space group
- Classification of space groups
- Space group symbols
- Symmetry of diffraction pattern
 - point groups
- SG determination in structure solution process

Conventional diffraction scheme



real space

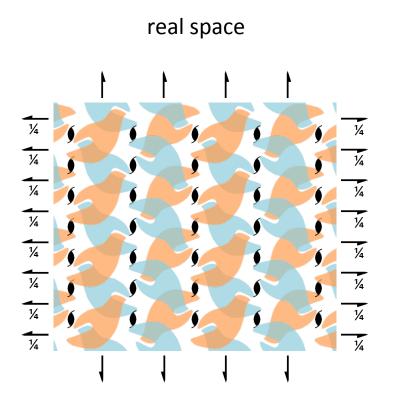
Bragg planes

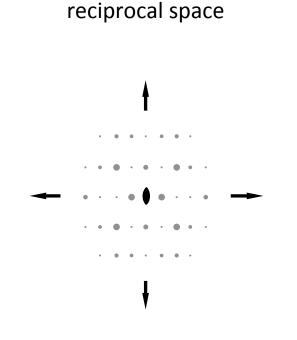
reciprocal space

The concept of reciprocal lattice is based on angular relation between the incident beam and the Bragg planes. Therefore:

- Reciprocal lattice rotates together with crystal
- However, reciprocal lattice is not translated together with crystal

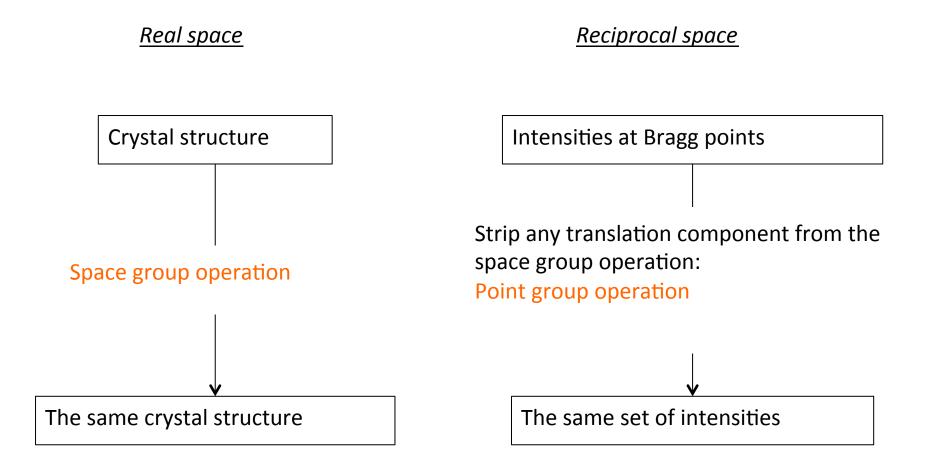
Symmetry of intensities



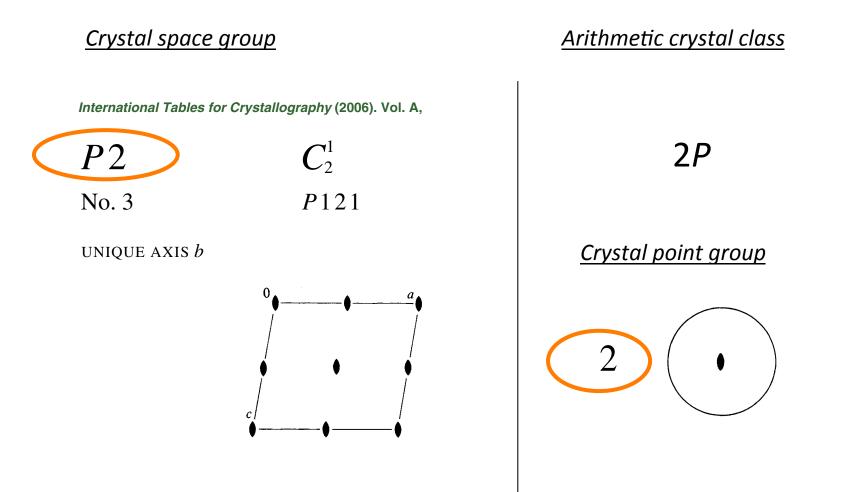


All axes of the same order and in the same direction are "merged" together to give an element of a point group.

Symmetry of intensities



Space group and point group



Space group and point group

Crystal space group

Arithmetic crystal class

International Tables for Crystallography (2006). Vol. A,

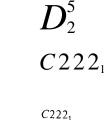
 $\frac{1}{4}$

 $\frac{1}{4}$

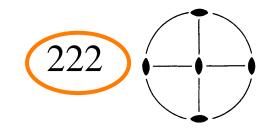
 $\frac{1}{4}$

1 4

C2221



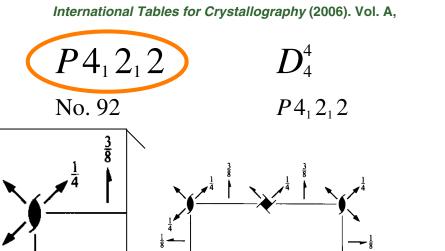
Crystal point group



Space group and point group

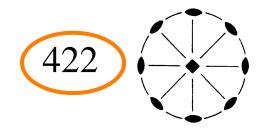
Crystal space group

Arithmetic crystal class

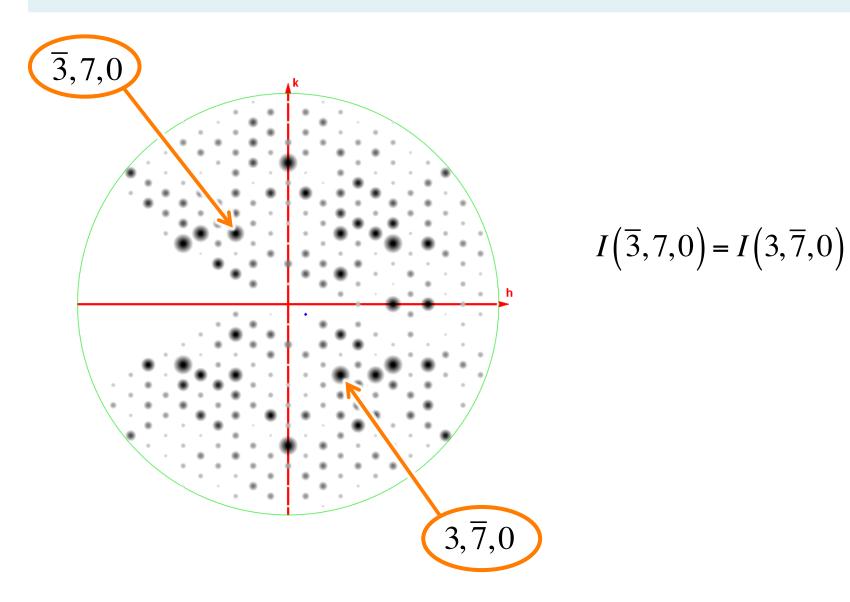


422P

Crystal point group



Friedel's law



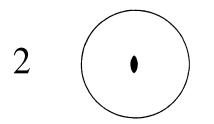
Point group and Laue group

+ inversion =

Arithmetic crystal class

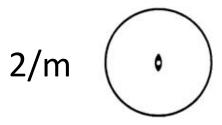
2*P*

Crystal point group



Patterson space group

Laue point group



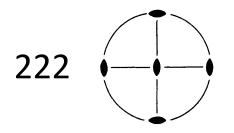
Point group and Laue group

+ inversion =

Arithmetic crystal class

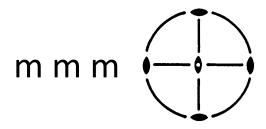
222*C*

Crystal point group



Patterson space group

Laue point group



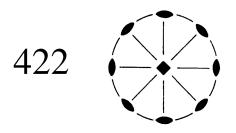
Point group and Laue group

+ inversion =

Arithmetic crystal class

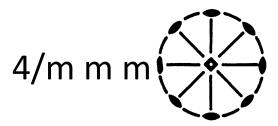
422*P*

Crystal point group



Patterson space group

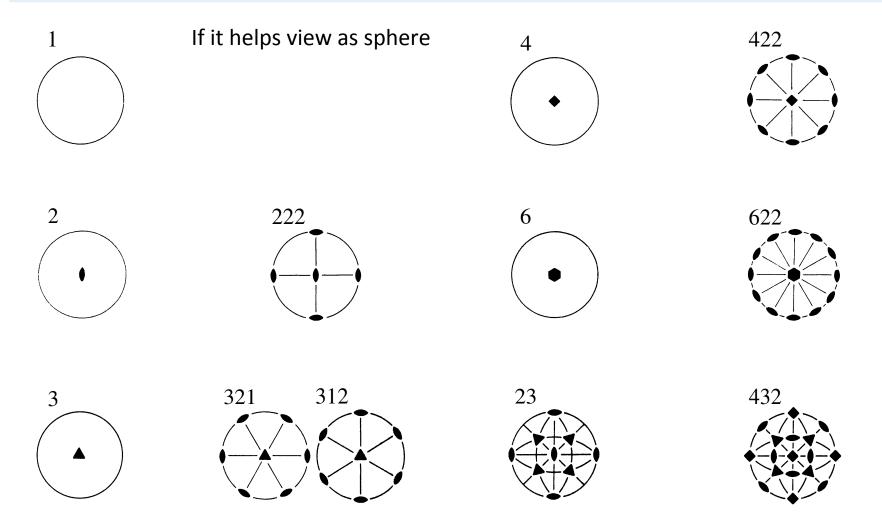
Laue point group



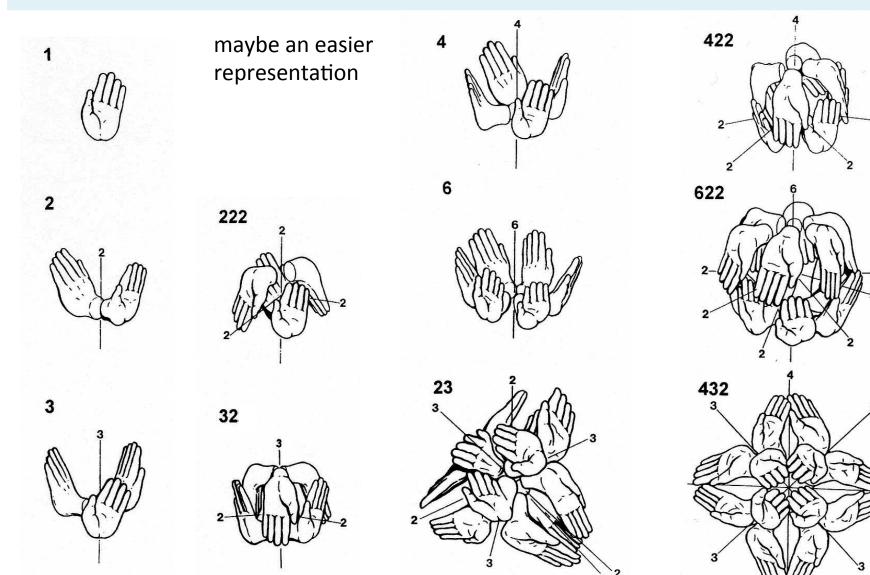
The eleven Laue point groups or crystal classes

Crystal system	Laue point group	Non-centrosymmetric point groups belonging to the Laue point group
Cubic	m3m m3	432 43 <i>m</i> 23
Tetragonal	4/mmm 4/m	422 4 <i>mm</i> 42 <i>m</i> 4 4
Orthorhombic	mmm	222 mm2
Trigonal	3 <i>m</i> 3	32 3m 3
Hexagonal	6/mmm 6/m	622 6 <i>mm</i> 6 <i>m</i> 2 6 6
Monoclinic	2/m	2 m
Triclinic	ī	1

The point groups that can exist in protein crystals



The point groups that can exist in protein crystals

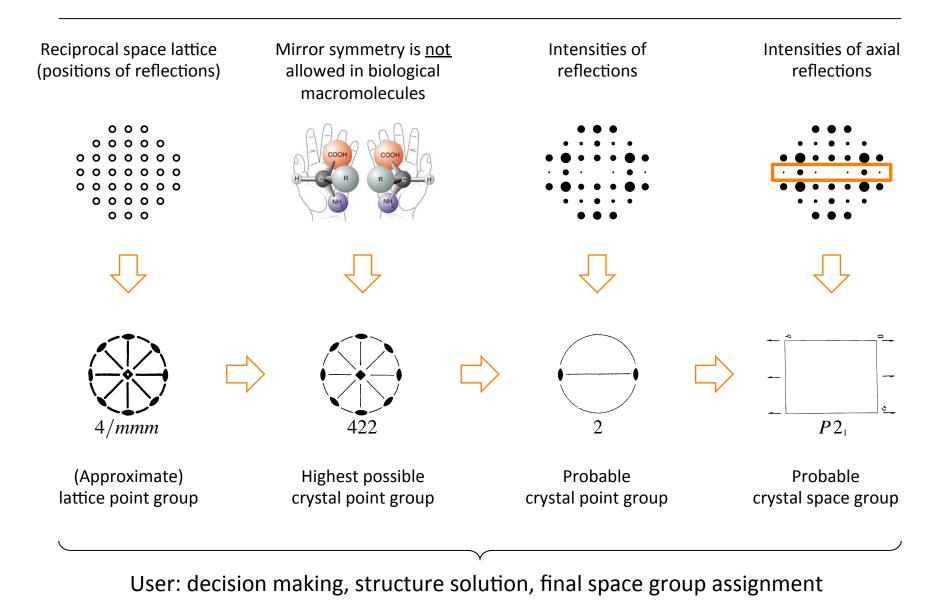


- Example structure (using Coot)
 - examine symmetry operations
 - construct space group
 - assign crystallographic origin
 - identify space group
- Classification of space groups
- Space group symbols
- Symmetry of diffraction pattern
 point groups
- SG determination in structure solution process

How do we deduce the Space Group in practice?

- We start in reciprocal space (point group)
- We go all way back from symmetry in reciprocal space to crystal space group
 - Data processing gives values of the unit cell parameters
 - Lattice symmetry is derived from the unit cell parameters
 - Comparison of related intensities gives crystal point group
 - Systematic absences allow to reduce the number of possible space groups.
 - Space group is only a hypothesis until structure is complete

Space group assignment (e.g. Pointless)



End